

Draft Environmental Impact Assessment

**A-24-012/0485-2501 Music Hall
Renovation and Addition
925 Bascom Mall, Madison, WI
53706**

Prepared for:

**University of Wisconsin Board of
Regents of State Colleges
21 N Park Street, Madison, WI 53715**

January 14, 2025

Draft Environmental Impact Assessment

**A-24-012/0485-2501 Music Hall Renovation and Addition
925 Bascom Mall, Madison, Wisconsin 53706**

This report was prepared by:

Peter Kaufmann-Luft
Environmental Scientist

This report was reviewed by:

Logan C. Seipel, PG
Hydrogeologist / Project Manager

3433 Oakwood Hills Parkway
Eau Claire, WI 54701-7698
715.834.3161 • Fax: 715.831.7500
www.AyresAssociates.com

Ayres Project No. 23-1948.30

File: i:\23\uw systems\uw systems ae on-call 2023 (23-1948.xx)\23-1948.30 uw madison music hall
renovations eia (a-24-014)\deliverables\draft eia\deia_uw madison music hall renovation and
addition.docx

Contents

	<u>Page No.</u>
I. Description of Proposed Action	1
A. Title of Proposal	1
B. Location	1
C. Project: Define Proposed Action	1
1. Description.....	1
2. Purpose and Need.....	2
D. Estimated Cost and Funding Source	2
E. Time Schedule	2
II. Existing Environment	3
A. Physical	3
1. Land Use	3
2. Soils and Topography.....	3
3. Surface water, Groundwater, and Geology	3
4. Wetlands and Floodplains	4
B. Biological	4
1. Flora	4
2. Fauna	4
3. Endangered Resources Review.....	4
C. Social.....	5
1. City of Madison and Dane County.....	5
2. UW-Madison Campus	5
3. Employment and Income.....	5
4. Neighborhoods	6
5. Important Social Features and Buildings Near the Project Site	6
D. Economic	7
E. Other.....	7
1. Historical and Archaeological	7
2. Environmental Contamination	7
III. Proposed Environmental Change.....	9
A. Manipulation of Terrestrial Resources	9
B. Manipulation of Aquatic Resources.....	9
C. Structures.....	9
D. Other	9
IV. Probable Adverse and Beneficial Impacts.....	10
A. Physical Impacts	10

B. Biological Impacts	10
C. Socioeconomic Impacts	11
1. Social.....	11
2. Economic.....	11
D. Other (Archaeological, Historical, etc.)	11
1. Historical and Archaeological	11
2. Environmental Contamination	11
3. Utilities	12
4. Parking and Transportation	12
V. Probable Adverse Impacts That Cannot Be Avoided.....	12
VI. Relationship Between Short-Term Uses of the Environment and the Maintenance and Enhancement of Long-Term Productivity.....	13
VII. Irreversible or Irretrievable Commitments of Resources If Action Is Implemented.....	13
A. Energy	13
B. Archaeological and Historic Features or Sites	13
C. Other	13
VIII. Alternatives.....	13
IX. Evaluation.....	14
A. As a result of this action, is it likely that other events or actions will happen which may significantly affect the environment? (secondary effects)	14
B. Does the action alter the environment so a new physical, biological, or socioeconomic environment would exist? (new environmental effect)	14
C. Are there existing environmental features which would be affected by the proposed action scarce, either locally or statewide? (geographically scarce).....	14
D. Does the action and its effects require a decision which would result in influencing future decisions? Is the decision precedent setting?	14
E. Are there concerns which indicate a serious controversy? (highly controversial)	14
F. Does the action conflict with official agency plans or with any local, state or national policy? Is the action inconsistent with long-range plans or policies?	14
G. While the action itself may be limited in scope, would repeated actions of this type result in major or significant impacts to the environment? (cumulative impacts)	15
H. Will the action modify or destroy any historical, scientific or archaeological site?.....	15
I. Is the action reversible? Will it commit a resource for the foreseeable future? Does it foreclose future options?	15
J. Will the action result in direct or indirect impacts on ethnic or cultural groups or alter social patterns? (social-cultural impacts).....	15
K. Other.....	15
X. List of Agencies, Groups and Individuals Contacted Regarding This Project.....	15
XI. Recommendation	16
XII. References	17

List of Appendices

- Appendix A Site Location Map and Photographs
- Appendix B Preliminary Project Plans
- Appendix C Existing Environment Research
- Appendix D Endangered Resource Review
- Appendix E Document Distribution List
- Appendix F Draft EIA Public Notice and Meeting Minutes (reserved)

I. Description of Proposed Action

A. Title of Proposal

Music Hall Addition and Renovation

Project # A-24-012/0485-2501

B. Location

Address: 925 Bascom Mall, Madison, WI 53706

County: Dane County

City: City of Madison

Section-Town-Range: Southeast ¼ of the Southeast ¼ of Section 14, Township 7 North Range 9 East

C. Project: Define Proposed Action

1. Description

This project renovates, restores, and creates an addition for the La Follette School of Public Affairs (LFS) via two phases.

Phase 1 focuses on Site work, exterior envelope repairs, roof repair/replacement, mechanical, electrical, plumbing, fire safety repairs, and complete interior renovation to meet La Follette's programmatic requirements.

Interior renovation will modify the building so that it operates as one unified structure (where the present building operates like two distinct spaces). The space program for the existing building will include a large gathering space that is suitable for major public speakers (called "the Forum"), as well as other key programmatic spaces for the La Follette School. A clear entry on the Bascom Hill side of the existing building will welcome students and guests to the renovated building.

This project replaces deteriorated stone and patching materials on each elevation of Music Hall (including the clock tower); replaces all gutters, downspouts, and flashing; and installs a new roof. Complete rehabilitation of all stone facades is recommended, including rebuilding and repairing eight locations with bulging stone units. The project will remove the storm windows on more than half of the windows; and repair, restore, refinish, and install new, historically sensitive units on all openings.

Interior work includes removal and/or repair of ceiling, walls, and stairwell plaster finishes that have suffered from years of water damage. The clock tower interior work includes minor scraping, sanding, sealing, priming, and painting of the louvers and replacement of the heavy wire mesh bird control. Drywall and plaster patches will be removed and replaced throughout the first, second, and third floors. The wood plank flooring on the fourth and sixth levels will be restored and/or replaced. The tin floor covering and counter on the fifth floor will also be replaced.

The mechanical systems located in the building are 35 years old, past their life expectancy, and will be replaced. Electrical, Plumbing, Fire Protection, and all other mechanical systems will be upgraded to accommodate the program and bring the building to code. This includes new fire protection service and standpipes, all new piping and plumbing fixtures, building automation system, electrical distribution panels, lighting, generator, new elevator, security (card access and security cameras), etc.

The Phase 1 project will include a reconfiguration of exterior walkways to create accessible access to the building from adjacent pedestrian routes and Park Street. Work associated with the façade restoration will require new foundation landscape plantings to be implemented. Tree impacts will be limited to Phase 2 activities.

Phase 2 will create an addition to the south of the existing building. The addition will be approximately 26,000 GSF, dispersed over 3 levels. The addition will provide additional faculty and staff office spaces, additional classrooms, conference rooms, and collaboration space. Most of the parking spaces along the north side of Lathrop Drive will be eliminated due to the size and location of the addition.

2. Purpose and Need

The building was originally constructed between 1878 and 1880, and the building was officially occupied by March 2, 1880. In 2012, an area of exterior wall veneer stone collapsed, and an exterior analysis of the entire building completed in 2017 determined that weather, age, and damaged repairs have caused considerable damage to the building overall.

Year after year, this structure has sustained additional damage without repairs to the roof, gutter system, and stone veneer envelope. Significant deterioration of the building exterior has continued to affect the underlying structure, exterior façade, and interior of the building. Damage is significant and needs to be addressed immediately before further catastrophic failure occurs.

The La Follette School of Public Affairs (LFS) is the new program that this building will be retrofitted to accommodate. LFS is currently spread across seven campus buildings, including its primary location in a former single-family residence built in 1854. Enrollment increases are spurring the need for a space where students, staff, and faculty can connect, collaborate, and interact, something not currently afforded by the dispersed physical locations of this LFS. The current UW-Managed Study for the LFS considers the Music Hall site with a goal to accommodate the space program needs of LFS, while also creating flexible, universal use of space that meets campus planning guidelines and includes office, support, meeting, and classroom space that will best accommodate future growth.

D. Estimated Cost and Funding Source

The total project cost for Phase 1 is estimated at \$50,000,000, funded by gifts/grants. Phase 2 is to be determined.

E. Time Schedule

Phase 1 BOR Authority to Construct:	Anticipated February 2026
Phase 1 Bid Date:	Anticipated December 2026
Start Phase 1 Construction:	Target Start – Winter 2026
Phase 1 Completion:	Anticipated Fall 2028
Phase 1 Substantial Completion/Occupancy:	Anticipated April 2029
Phase 2 Schedule:	To be determined

II. Existing Environment

A. Physical

1. Land Use

The project site is currently occupied by a historic building originally constructed in the late 1800's. The project site is currently used by the University of Wisconsin - Madison as the Music Hall.

Adjoining property uses include educational halls and administrative buildings used by the University. Residential and commercial properties are in the surrounding area within a ½-mile south of the project site.

2. Soils and Topography

Soils in the proposed project area were reviewed using the USDA Web Soil Survey, which provides soil data and information produced by the National Cooperative Soil Survey. Individual maps and datasets are included in Appendix C. The planned project area has two soil types. The two soil types are described below:

- Dodge silt loam (7124B) is classified as well-drained, with 2-6 percent slopes. Hydraulic conductivity in these soils is moderately high between 0.20 and 0.57 inches per hour (in/hr). The Farmland Classification indicates that all areas with this soil type are prime farmland.
- McHenry silt loam (7310C2) is classified as well-drained, with 6-12 percent slopes. Hydraulic conductivity in these soils is moderately high to high between 0.60 and 2.00 in/hr. The Farmland Classification indicates that all areas with this soil type are of statewide importance.

The project site is located at the base of the easternmost glacial drumlin defining the topography of the historic core of UW-Madison. The ground surface of the project site is 885 feet msl (mean sea level) and dips east to west approximately 10-20 feet. The topography generally has uneven drainage patterns due to where ice was lodged and then melted during the retreat of the last glaciation, and from glacially transported rock and gravel.

3. Surface water, Groundwater, and Geology

Lake Mendota is located 0.25 miles north of the project site, Lake Monona is located 1 mile southeast and east of the project site, and Lake Wingra is located 1.25 miles southwest of the project site. There are no classified rivers, streams, or intermittent water bodies within one mile of the project site. The Wingra Creek (WBIC 804700) is the closest classified body of water within 1.5 miles of the project site.

Groundwater is located between 860 and 850 feet msl (~100 feet below ground surface) with a hydraulic gradient flowing north towards Lake Mendota (WGNHS, 1999). Wisconsin contains no sole source aquifers (EPA, 2024¹). The project area contains no mapped wetlands on the state inventory or wetland indicators (WDNR, 2025) and is not located in any floodplain zone (WDNR, 2025).

Bedrock geology within the project site is comprised of the Cambrian Wonewoc Formation. This formation consists of yellow to white and brown, medium grained quartz sandstone. According to local well construction reports from within 0.5 miles of the project site, sandstone bedrock is located approximately 75 feet (elevation 875 feet msl) below ground surface (bgs).

4. Wetlands and Floodplains

The Wisconsin Department of Natural Resources (WDNR) Surface Water Data Viewer provides web-mapping tools for the state's surface water and wetland resources. A wetlands map was generated for the general vicinity of the site. The results indicate there are no mapped wetlands within the project area; the closest mapped wetland indicators are located approximately 0.5 miles northeast (Figure 5, Appendix C).

The online Federal Emergency Management Agency (FEMA) Flood Map Service Center was utilized to generate a local map to review the flooding potential for the project area. The map indicates that the project site is not located within an area of flood hazard. Refer to Figure 4, Appendix C, for the floodplain map that encompasses the project site.

B. Biological

1. Flora

Dane County is located in the Southeast Glacial Plains Ecological Landscape. Wetlands encompass approximately 14.5% of the Southeast Glacial Plains Ecological Landscape (713,561 acres) and consists of emergent/wet meadow, forested, and shrub/scrub wetlands (WDNR, 2015). This ecological landscape is also comprised of northern and central hardwood forests, lowland hardwood forests, and oak-hickory forests (WDNR, 2015). One hundred and nine vascular plant species located within the Southeast Glacial Plains Ecological Landscape are on the Wisconsin Natural Heritage Working List (WDNR, 2015). Of these vascular plants ten species are listed as Wisconsin Endangered, 28 are listed as Wisconsin Threatened, and 71 are listed as Wisconsin Special Concern (WDNR, 2015). There are six globally rare species located within the Southeast Glacial Plains Ecological Landscape, two of which are listed as U.S. Threatened (WDNR, 2015). There are no wetlands or indicators near the project site. The project site consists of an urban environment and lacks the environmental characteristics conducive to rare and endangered plant species. Civil plans for the project depict approximately 25 trees and approximately nine planting areas within the area of disturbance.

2. Fauna

Approximately 131 species of rare birds, herptiles, mammals, fishes, and invertebrates inhabit the Southeast Glacial Plains Ecological Landscape (WDNR, 2015). However, as an urban developed area with manicured landscaping, the project area does not provide significant natural habitat for fauna. However, squirrels, rabbits, other small mammals, migratory birds, and insects are expected to use the landscaped area for foraging and breeding. Urban landscapes also provide diverse habitats and ecological niches for a variety of insects and other invertebrates.

3. Endangered Resources Review

Ayres submitted an Endangered Resources (ER) Preliminary Assessment to the Wisconsin Department of Natural Resources (WDNR) on November 25, 2025, for information on threatened, endangered, and special concern species that may potentially be in the general area of the project or may be impacted by the project. The WDNR preliminary review found that further actions are required to ensure compliance based on the search results regarding state and/or federally listed threatened or endangered animal or plant species.

Ayres submitted an Endangered Resources Review (ERR) request to the WDNR on December 2, 2025, to obtain specific information on avoidance measures if applicable, and a more detailed inquiry as to pertinent endangered resources that are present in the project area.

The WDNR indicated that the project is covered by Table 2 of the Broad Incidental Take Permit/Authorization for No/Low Impact Activities (No/Low BITP/A). A formal ERR letter is not needed,

and no actions are needed to comply with Wisconsin endangered species laws. The ER Preliminary Assessment form is in Appendix D. The ERR assessment and recommendations are in Appendix D.

C. Social

Existing social aspects of the area are presented as context to the project and the social profile of potential beneficiaries or parties impacted by the project.

1. City of Madison and Dane County

Table 1 provides population data for Dane County and the City of Madison. Between 2010 and 2020, the most recent period for which complete U.S. Census Bureau data are available, the City of Madison has seen an increase in the population of 15.7%. Dane County has seen a rise of 15% over approximately ten years.

Table 1: Population Data for Dane County, City of Madison

	Census 2010	Census 2020	Numeric Change	Percent Change 2010-2020
City of Madison	233,209	269,840	36,631	15.7%
Dane County	488,073	561,504	73,431	15.0%
Wisconsin	5,686,986	5,893,718	206,732	3.6%

Source: U.S. Census Bureau: data.census.gov.

According to the Wisconsin Department of Administration (DOA) Demographic Service Center, Dane County is projected to experience a population change increase from 2020 to 2050 of approximately 12%. The expected growth for the City of Verona from 2020 to 2050 was 34.3%.

2. UW-Madison Campus

UW-Madison, founded in 1848, stretches across 939 acres in downtown Madison. This campus is the oldest, largest, and flagship institution of the 13 University of Wisconsin System campuses. The Fall 2025 enrollment of 51,822 consists of 37,198 undergraduates, 10,069 graduate students, 2,560 clinical doctorate students, and 1,995 special students.

UW-Madison employs 27,293 faculty and staff to support this enrollment. The student body consists of 46.9 percent male and 53.1 percent female. UW-Madison has an estimated 502,324 living alumni (statistics provided by www.wisc.edu website).

3. Employment and Income

Table 2 provides employment and income data for residents of the City of Madison, Dane County, Wisconsin, and the United States in 2023-2024. The unemployment rate in the Dane County (24.1% as a percent unemployed of the civilian labor force) was lower than the State of Wisconsin (45.4%) and lower than the United States (34.7%) in 2023-2024. Madison residents' per capita income was \$45,557 compared to \$51486 for Dane County, \$42,019 for Wisconsin, and \$43,286 for the United States (U.S. Census Bureau, 2023).

Table 2: Employment and Income Data

Location	Civilian Labor Force	Number Employed*	Number Unemployed*	Unemployment Rate (%)*	Per Capita Income (\$)
City of Madison	200,851	--	--	--	48,557
Dane County	414,196	314,435	99,761	24.1	51,486
Wisconsin	3,898,478	2,642,958	1,255,520	45.4	42,019
United States	214,269,922	139,831,742	74,438,180	34.7	43,286

Notes: *U.S. Census employment data was not available for the City of Madison.

Source: Census Bureau QuickFacts from 2025.

4. Neighborhoods

The project site is an academic building on the UW-Madison campus. The nearest residence is 215 feet to the south, and the nearest residential neighborhood is over 3,500 feet to the southwest.

The portion of the University of Wisconsin – Madison campus that the project site occupies represents the oldest portion of campus and presents a traditional collegiate aesthetic with an architecturally rich building inventory set in a verdant landscape setting. While being the most building-dense neighborhood on campus, an emphasis is placed on pedestrian walkability and scale, with limited street infrastructure throughout the area. This makes this area more appropriately scaled and massed in relation to architecture.

5. Important Social Features and Buildings Near the Project Site

The project site is located within the UW-Madison campus; noted below are the institutional buildings adjacent to the project site:

- George L. Mosse Humanities Building (455 North Park Street): This building is directly adjacent to the project site on the east side and is located on a different parcel. The Humanities building houses a student gallery, and a multidiscipline art studio for students and faculty.
- University of Wisconsin Law School (975 Bascom Mall): This building is directly adjacent to the project site on the west side and is located on the same parcel. The Law Building houses the Law School Atrium, the Roger Boerner Plaza, the Quarles & Brady Reading Room, the Habush Habush & Rottier Reading Room, Godfrey & Kahn Hall, Michael Best & Friedrich Hall, the Appellate Courtroom, the Foley & Lardner Trial Courtroom, and the Sheldon Lubar Faculty Commons. These facilities serve as places for study, meeting grounds, and lecture halls for the students and faculty of the Law School.
- Chadbourne Hall (420 North Park Street): This building serves as a popular option for first-year and non-freshman residents to the University. The building offers large gathering spaces, and amenities which offer a mix of academic and residential life. The building serves as a central

residence hall for the UW-Madison campus with many of the other academic buildings only being within a short walking distance from this residence hall.

- Wisconsin Historical Society (816 State Street): This building houses the Wisconsin Historical Society which serves the entire state for researchers working on projects involving records for important buildings or places.

D. Economic

The University of Wisconsin-Madison significantly impacts the local and State economy. From the 2024-2025 *Budget In Brief* report, UW-Madison had a total revenue of approximately \$4.9 billion, which consisted of roughly \$539 million from state government revenue, \$980 million from student tuition and fees, \$784 million from federal programs, \$931 million from gifts from donors and private grants, \$1.72 billion made up of auxiliary expenses and other receipts.

E. Other

1. Historical and Archaeological

A search of the Wisconsin Historical Preservation Database (WHPD) was conducted on December 4, 2025, to determine the presence of historical and archaeological sites potentially affected by the proposed project. The WHPD is maintained by the Wisconsin Historical Society (WHS) and consists of four data sources including:

- Archaeological Report Inventory (ARI): contains summaries of archaeological investigations at archaeological and burial sites.
- Archaeological Sites Inventory (ASI): contains information about archaeological and burial sites, unmarked cemeteries, marked cemeteries, and cultural sites.
- Architecture and History Inventory (AHI): contains basic information on historic buildings, structures, and objects.
- National Register (NR) of Historic Places: contains information for historic properties listed in the State and National Register of Historic Places

The project building (925 Bascom Mall) is identified on the AHI and indicated to be contributing to the Bascom Hill Historic District. No other sites within the area of potential effect were identified on the WHPD.

Two additional AHI sites were identified adjoining the project area. The UW-Madison Law Building (975 Bascom Mall) adjoining to the west of the project area is also identified on the AHI and listed as contributing to the Bascom Hill Historic District. The Pedestrian Bridge over North Park Street adjoining to the northeast of the project area is identified on the AHI and listed as contributing to the Bascom Hill Historic District.

Known archaeological sites were not identified within the area of potential effect for the proposed project. Due to the terms of the WHPD user agreement, database printouts are maintained in the project file and are not attached to this report.

2. Environmental Contamination

Environmental databases documenting sites known or likely to be contaminated with petroleum products or hazardous substances were searched on November 26, 2025. These databases included:

- Wisconsin Department of Natural Resources Remediation and Redevelopment Sites Map
- Wisconsin Department of Agriculture, Trade, and Consumer Protection Storage Tank Database
- United States Environmental Protection Agency NEPAssist, including:
 - Hazardous waste: Hazardous waste information contained in the Resource Conservation and Recovery Act Information (RCRAInfo) includes an inventory of all generators, transporters, treaters, storers, and disposers of hazardous waste that are required to provide information about their activities.
 - Air pollution: The air pollution data (ICIS-AIR) contains compliance and permit data for stationary sources of air pollution (such as electric power plants, steel mills, factories, and universities) regulated by EPA, state, and local air pollution agencies. The information in ICIS-AIR is used by the states to prepare State Implementation Plans (SIPs) and to track the compliance status of point sources with various regulatory programs under the Clean Air Act.
 - Water dischargers: As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating sources, such as municipal and industrial wastewater treatment facilities, that discharge pollutants into waters of the United States. EPA tracks water discharge permits through the Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS) databases, which include information on when a permit was issued and when it expires, how much the company is permitted to discharge, and the actual monitoring data showing what the company has discharged.
 - Toxic releases: The Toxics Release Inventory (TRI) contains information on toxic chemical releases and waste management activities reported annually by certain industries as well as federal facilities. The database also contains links to compliance and enforcement information.
 - Superfund: The Superfund Enterprise Management System (SEMS) provides information regarding sites under the Comprehensive Environmental Response, Compensation, and Liability Act -- otherwise known as CERCLA or Superfund. CERCLA provides a Federal "Superfund" to locate, investigate, and clean up uncontrolled or abandoned hazardous-waste sites as well as accidents, spills, and other emergency releases of pollutants and contaminants into the environment. Sites on the National Priorities List (NPL) is the list of sites of national priority among the known releases or threatened releases of hazardous substances, pollutants, or contaminants throughout the United States and its territories. Sites on the Superfund Alternative Approach (SAA) list use the same investigation and cleanup process and standards that are used for sites listed on the NPL. Currently, sites with SAA agreements are a small subset of all Superfund cleanup agreements.

There are no known or potential environmental contamination sites identified within or adjoining the proposed project boundaries. However, there was one hazardous waste site identified on the NEPAssist map within 325 feet of the proposed project boundaries. There is also a site identified on the WDNR's RR Sites Map with continuing obligations within 300 feet east of the proposed project boundaries. There are no registered storage tanks at the project site. Database search printouts are provided in Appendix C.

III. Proposed Environmental Change

A. Manipulation of Terrestrial Resources

Exterior areas of the project site, including existing hardscape and greenspace on the south exterior side will be removed as part of the addition phase (Phase 2) of the project. During Phase 2 of the project, the south exterior side will be regraded to facilitate the construction of building additions, pavement, landscaping, utilities, and stormwater management features. The existing greenspace on the north side of the project area will be re-used for new tree and shrub species along with many herbaceous plant species. The sidewalk on the north and east sides of the project site will get reconfigured. Approximately 20-25 trees and other landscaped areas will be removed during the addition phase (Phase 2) of the project. Landscaping plans call out the addition of 25 trees and nine planting areas.

B. Manipulation of Aquatic Resources

The proposed project does not involve direct changes to any aquatic resources. However, indirect changes to aquatic resources will occur due to a net decrease in pervious ground surface that allows for stormwater infiltration from the new building addition. To correct for this decrease in pervious surfaces, new planting areas surrounding the existing building and addition, and on the landscaped roof of the addition, will reduce runoff from impervious surfaces by increasing infiltration to groundwater, which in turn will reduce the discharge of sediment and other pollutants to Lake Mendota and other surface waters of the state.

C. Structures

One of the primary goals of the project is to address deteriorating infrastructure and to also create a new space that will be home to the La Follette School of Public Affairs. The structural renovations, and new building addition, will be completed in two distinct phases. Phase 1 will focus on repairing the deteriorated stone and patching materials, replacement of all gutters, downspouts, flashing, new roof installation, and restoration/repair on windows and openings on the exterior for the existing structures. Phase 1 will also include interior work on the existing structures which include removal and repair of ceilings, walls, and stairwell plaster finishes which have received years of water damage. The Clock Tower will specifically have minor interior work done to include renovation of the louvers and replacement of bird control measures on the exterior. Phase 2 will focus on the new building addition to the south of the existing buildings. This new addition will encompass approximately 26,000 gross square feet, divided into three levels.

Ancillary to the building updates and renovations, the project will also replace and reconfigure the existing walkways. The hardscape design includes three new concrete walkways with three outdoor terraces and one outdoor courtyard in the center of the proposed addition.

D. Other

The building mechanical systems are 35 years old, past their life expectancy, and will be replaced. Electrical, plumbing, fire protection and all other mechanical systems will be upgraded to accommodate the program and bring the building up to code. This will include new fire protection service and standpipes, all new piping and plumbing fixtures, building automation system, electrical distribution panels, lighting, generator, new elevator, and security (card access and security cameras).

IV. Probable Adverse and Beneficial Impacts

A. Physical Impacts

Expansion of the existing building during Phase 2 of the project will produce a net decrease in pervious ground surface that allows for stormwater infiltration. However, planting areas will be introduced on the north, west, and east sides of the project site. These planting areas will reduce stormwater runoff from impervious surfaces by increasing infiltration to groundwater, which in turn will reduce the discharge of sediment and other pollutants (e.g., oil and salt from vehicle parking areas and sidewalks) to Lake Mendota via the storm sewer system. The new building addition will include a landscaped roof. The landscaped roof will include a prairie green roof, and an occupiable roof terrace surrounded by another planting area. This will aid in infiltrating stormwater runoff.

There is also a potential for short-term stormwater pollution and erosion of soil during construction activities involving grading or excavation until the area of disturbance is restored with new pavement, concrete, and vegetation. A WDNR Construction Site Stormwater Runoff General Permit (WI-S067381-6) is necessary for the project because it involves more than one acre of ground disturbance. Conditions of the permit require plans with best management practices, such as silt fencing and storm sewer inlet protection, to control erosion and manage stormwater runoff.

There will be minor short-term adverse impacts associated with construction activities, particularly noise, vibration, and minor dust emissions from construction equipment and tools. The City of Madison Ordinance Sec. 24.08 (3) (f), does not allow any person to operate or permit the operation of any equipment used in construction work between the hours of 7:00 p.m. and 7:00 a.m., from Monday through Saturday, in such a manner as to unreasonably interfere with the peace, comfort and quality of life of neighboring persons or ordinary sensibilities. Additionally, construction work will accommodate student programming and adjust construction activities around exam study days and during campus events. The City of Madison Ordinance Sec. 37.08 (2) outlines that erosion control plans must include consideration of efforts to control the transport of sediment. This includes providing sequential steps to mitigate the erosive effect of land-disturbing activities to be followed in order and in a manner consistent with accepted erosion control methodology. Ch. NR 415.04, Wisconsin Administrative Code, requires that precautions be taken to prevent emissions of fugitive dust (e.g., water application).

B. Biological Impacts

No significant adverse biological impacts are anticipated. An Endangered Resources Review application was submitted to WDNR on December 1, 2025. On December 2, 2025, the WDNR verified that the project is covered by a Broad Incidental Take Permit/Authorization because project activities will be performed entirely within urban/residential areas, manicured lawns, or other artificial/paved surfaces. Documentation is provided in Appendix D. There are no actions that need to be taken to comply with state endangered species laws.

The project will create a beneficial impact from the addition of approximately 25 trees plus additional herbaceous plants in planting areas which will increase local biodiversity and provide microhabitat for a variety of species.

Proposed building additions and renovations will increase the surface area of glazing (i.e., glass) on the buildings, which increases the likelihood of bird collisions. The DFD Sustainability Guidelines (2024) encourage the use of bird-deterrant strategies such as properly designed scrim, glazing frit, or specialized coating, for facades with greater than 20% glazing, to reduce non-treated glazing to a maximum of 20% in the zone comprised by the lowest two stories or tree canopy height, whichever is greater. Preliminary design specifications for the project include the use of bird friendly exterior glazing with printed dots, which provides appropriate mitigation for potential bird collisions.

C. Socioeconomic Impacts

1. Social

The academic use of the Music Hall will change from being utilized as a performance hall and will be home to the La Follette School of Public Affairs as a result of the proposed project, and no significant adverse social impacts are anticipated in the long term. Student and faculty/staff comfort and safety is anticipated to increase based on the improved renovations and fixtures of the building project. The La Follette School of Public Affairs has seen a 40% increase in public policy student applications and a 60% increase in health policy student applications as of 2024 (Schleis, 2024). As of 2024, student demand projections suggest La Follette could serve a total of 4,000 students annually over the next 5 years (Yackee and Puga, 2024). This project is expected to address this growth, and aid in preparing students for success in the workforce with in-demand training and access to professional development. A relocation plan will be developed to address the temporary displacement of building occupants during construction.

2. Economic

Beneficial economic impacts are anticipated in the short- and long-term timescales. During the short term, there will be an increase in employment and expenditures (materials, fuels, lodging, meals, etc.) attributable to construction. A study by the University of Colorado Boulder Business Research Division for Associated General Contractors Wisconsin (2022) indicates that every \$1 million spent within the construction industry supports 12 jobs, including 7 construction jobs and 5 jobs in supporting sectors, as a result of the subsequent spending associated with the induced effects of the project. The project budget is approximately \$100,000,000. Accordingly, the implementation of this project could support up to 1,200 jobs. However, no new UW-Madison employment positions are anticipated to be directly generated as part of this project. Additionally, the aforementioned study determined that the economic multiplier of initial construction cost spending is approximately 1.84. Thus, this proposed construction project can be expected to contribute up to \$184,000,000 to the local, regional, and national economy in the short term.

D. Other (Archaeological, Historical, etc.)

1. Historical and Archaeological

As described in Section II.E., the project building is listed on the AHI and listed as contributing to the Bascom Hill Historic District.

A historical assessment form with supporting attachments was submitted to the UWSA Historic Preservation Officer (HPO) for review on December 23, 2025. The University has had regular conversations with the WHS about this full restoration project and continues to discuss the impact of the addition. At the time of the Draft EIA report, the proposed rehabilitation and addition are under review by the WHS.

Additionally, seven stained glass windows and a lunette were implemented as part of a Percent for Art project titled 'Aria Windows' by Peter McGrain in 1988 and are planned to be incorporated back into the building. Desire to modify or change the work shall receive written approval of the Artist in collaboration with the Wisconsin Arts Board.

2. Environmental Contamination

As described in Section II.E.2. above, no sites with known or potential environmental contamination are located within the proposed project area. Additions and renovations at the Music Hall and continued use as academic buildings is unlikely to result in environmental contamination.

Renovation or demolition activities also have the potential for emissions of asbestos into the air, posing a health risk to workers and occupants. However, Ch. NR 447 of the Wisconsin Administrative Code requires that the facilities be inspected for asbestos and that any regulated asbestos-containing materials that are friable or likely to become friable during the project be abated before activities that would disturb them. Full containment and air monitoring will be required during abatement. Provided that these procedures are followed, significant asbestos emissions are not anticipated.

3. Utilities

In the short term, there will be a continued commitment of energy resources to construct the project, including fossil fuel consumption used by construction vehicles and equipment. The energy that will irreversibly be consumed includes fuel and electricity used to run construction equipment and to operate construction material manufacturing plants and quarries. Other electrical needs may consist of lighting, compressors, and tools.

The extension and connection to existing utilities to support the project will necessitate local land disturbance for direct buried, directionally drilled, or wiring on existing power lines. These impacts would be temporary, and any ground-disturbed activities would be revegetated and restored in kind upon completion. Local minor traffic disruptions may be necessary for construction teams to perform these installations, such as taking up all or portions of traffic lanes. Safe practices such as traffic control signs or flagging staff would be employed during times when these activities would occur.

4. Parking and Transportation

The project may have a short-term adverse impact on traffic and parking. Traffic impacts may include temporary lane closures along Lathrop Drive, Bascom Mall, and North Park Street for equipment deliveries/pickups to and from the site. Construction-related traffic to and from the project area along Lathrop Drive, Bascom Mall, and North Park Street during the project may include dump trucks, flat-bed semis, heavy-equipment haulers, utility-installation equipment, and contractor pickup trucks. No major trucking operations are planned. Utility installations as part of the project may result in localized lane closures; however, these impacts will not likely exceed the scope of normal utility installation operations that occur in the right-of-way. It is expected that any road crossing for utility interconnection would be directionally drilled.

V. Probable Adverse Impacts That Cannot Be Avoided

Probable adverse impacts that cannot be avoided during the project are related to construction activities and are therefore short-term in nature. These impacts include emissions of noise, vibration, and dust, as well as potential discharges of suspended solids in stormwater from ground disturbance, and temporary disruptions of utilities or services. However, these potential emissions and discharges may be sufficiently mitigated by using appropriate construction methods to reduce noise and vibration and implementing proper controls or best management practices such as water for dust suppression and silt fencing for stormwater pollution prevention.

Similarly, the temporary relocation of building occupants will have increased reliance on other campus parking lots, and the need for traffic control for utility connection in North Park Street cannot be avoided during construction. However, a relocation plan and traffic control plan will be developed to minimize these effects.

There will be a small long-term loss of greenspace around the existing building as the space is converted to building additions and improved greenspace.

VI. Relationship Between Short-Term Uses of the Environment and the Maintenance and Enhancement of Long-Term Productivity

As discussed in Section V above, short-term construction activities will produce adverse effects that can largely be mitigated with appropriate planning and control measures but not entirely avoided. However, the long-term productivity of the Music Hall and the UW-Madison campus as a whole will be enhanced and maintained by the project. This will be realized primarily through renovations and additions that aid the programmatic use of this building. The Music Hall will see the creation of two 60-person classrooms, and two study halls on the ground floor; a 40-person classroom, study hall, and two faculty halls on the first floor; and an executive suite, two faculty halls, and a large study hall on the second floor. In general, the building improvements will also facilitate environmental sustainability (i.e., energy efficiency and natural resource conservation), accessibility, safety, and occupant comfort.

VII. Irreversible or Irretrievable Commitments of Resources If Action Is Implemented

A. Energy

There will be an irreversible commitment of energy resources to construct the project, including fossil fuels and electricity consumed by construction vehicles and equipment, as well as manufacturing operations that provide materials to support the project. However, long-term energy consumption is anticipated to decrease as a result of the project due to modernized systems that reduce the usage of electricity, water, and fossil fuels.

B. Archaeological and Historic Features or Sites

The proposed project has the potential to affect the eligibility of the project building as a contributing structure within the Bascom Hill Historic District. The University has had regular conversations with the WHS about this full restoration project and continues to discuss the impact of the addition. At the time of the Draft EIA report, the proposed rehabilitation and addition are under review by the WHS.

C. Other

The project requires an estimated financial commitment of \$100,000,000 to complete the project plus ongoing operation and maintenance expenses.

VIII. Alternatives

A No Action alternative would not produce adverse environmental impacts of any degree. However, the need for this project would go unmet, allowing current adverse interior and exterior conditions to continue. Significant damage to the interior and exterior of the building would continue to occur, worsening the damage that has taken place since its last repairs in 2012. The current La Follette School of Public Affairs is currently spread across different physical locations on campus. Considering significant expected enrollment increases, the need for a consolidated single building which houses collaborative, and educational spaces would not be met if a No Action Alternative is chosen for this project.

IX. Evaluation

A. As a result of this action, is it likely that other events or actions will happen which may significantly affect the environment? (secondary effects)

No, as a renovation and minor expansion project that does not entail a substantial change in building or land use, this action is not likely to trigger other events or actions that would significantly affect the environment.

B. Does the action alter the environment so a new physical, biological, or socioeconomic environment would exist? (new environmental effect)

No, the action does not alter the environment such that a new physical, biological, or socioeconomic environment would exist. Although the physical environment will be altered mostly by landscaping and an expanded building footprint, this does not substantially change the physical environment at the campus scale. The biological environment at the site scale will be improved through landscaping features but will not substantially change the biological environment at the campus scale. Sustainability improvements will reduce annual energy costs but will not create a new socioeconomic environment, as the general use of the building remains academic.

C. Are there existing environmental features which would be affected by the proposed action scarce, either locally or statewide? (geographically scarce)

No, none of the existing site features are considered scarce at the local or state scale.

D. Does the action and its effects require a decision which would result in influencing future decisions? Is the decision precedent setting?

No, as a renovation and building expansion project, the action and its effects are not likely to influence future decisions by setting a precedent.

E. Are there concerns which indicate a serious controversy? (highly controversial)

No, this EIA has not identified highly controversial aspects of the proposed project or aspects that are likely to be identified as controversial during the public review process.

F. Does the action conflict with official agency plans or with any local, state or national policy? Is the action inconsistent with long-range plans or policies?

No, this action does not conflict with official agency plans or any local, state, or national policies. Additionally, local and state government officials are invited to participate in the public review process during the preparation of this EIA.

G. While the action itself may be limited in scope, would repeated actions of this type result in major or significant impacts to the environment? (cumulative impacts)

No, as a renovation and building expansion project, repeated projects of this type would not be anticipated to significantly impact the environment, namely because they make more efficient use of space and natural resources without requiring the development of new sites.

H. Will the action modify or destroy any historical, scientific or archaeological site?

The proposed project has the potential to affect the eligibility of the project building as a contributing structure within the Bascom Hill Historic District. The University has had regular conversations with the WHS about this full restoration project and continues to discuss the impact of the addition. At the time of the Draft EIA report, the proposed rehabilitation and addition are under review by the WHS. No scientific or archaeological sites would be impacted by the proposed project.

I. Is the action reversible? Will it commit a resource for the foreseeable future? Does it foreclose future options?

Renovation and expansion of academic buildings is not generally considered a reversible action, although it could be restored to the existing condition to a large degree through additional renovation and demolition. However, this action does not foreclose future options, as the buildings could be further renovated or expanded to meet other needs.

J. Will the action result in direct or indirect impacts on ethnic or cultural groups or alter social patterns? (social-cultural impacts)

This action is designed with the intention to change the occupancy of this academic building from the Music Hall, which houses the Mead Witter School of Music's Voice and Opera program, and the Department of Planning & Landscape Architecture to the La Follette School of Public Affairs. The current occupants of this academic building will be strategically moved to other locations within the campus. Although the change in programmatic use of the building may be interpreted as an alteration of existing social patterns, the social setting of the project area and campus will remain academic, and the action would not impact particular ethnic or cultural groups or alter social patterns in a significant way.

K. Other

Other factors warranting evaluation under this section were not identified during the preparation of this EIA.

X. List of Agencies, Groups and Individuals Contacted Regarding This Project

The following parties were consulted during the preparation of this EIA:

- Wisconsin Department of Natural Resources – Endangered Resources Review.
- University of Wisconsin System Administration Historic Preservation Officer – Historical Assessment.
- Wisconsin Historical Society (State Historic Preservation Office)

Additionally, several other agencies or local governmental units were invited to participate in the public review process for the Draft EIA:

- UW-Madison Student Government
- City of Madison
- Dane County
- Wisconsin Historical Society
- Wisconsin Department of Natural Resources

A list of agencies, groups, and individuals contacted for input during the public review period is provided in Appendix E. Agency resources used to support this EIA are cited in Section XII.

XI. Recommendation

The Campus Environmental Affairs Coordinator will review the Draft EIA and comments received during the Draft EIA public comment period to determine if a recommendation is needed to elevate this project to a Type I level as an Environmental Impact Statement (EIS).

RECOMMENDATION	(to be completed by institution WEPA Coordinator only)
----------------	--

EIS Not Required

Analysis of the expected impact of this proposal is of sufficient scope and detail to conclude that this is not a major action which would significantly affect the quality of the human environment. In my opinion therefore, an environmental impact statement is not required before the board undertakes this action.

Major and Significant Action: PREPARE EIS

Additional factors, if any, affecting the evaluator's recommendation:

CERTIFIED TO BE IN COMPLIANCE WITH WEPA - Public Notice Completed (include a copy of the public notice for permanent record)	
Institution WEPA Coordinator	Date:

This decision is not final until approved by the appropriate Director.

Regent Resolution 2508 11/06/81

XII. References

Brown, B.A., Massie-Ferch, K., Peters, R.M., 2013. Preliminary Bedrock Geology of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey Plate 1. Scale: 1:100,000.

Natural Resources Conservation Service. Web Soil Survey. Accessed December, 2025.
<https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx>.

United States Environmental Protection Agency. Map of Sole Source Aquifer Locations. Accessed December, 2025. <https://www.epa.gov/dwssa/map-sole-source-aquifer-locations>.

University of Colorado Boulder, Leeds School of Business, Business Research Division for Associated General Contractors Wisconsin. The Impact of Construction on the Wisconsin Economy: 2022 Study.
https://www.agcwi.org/uploads/8/2/4/7/82472102/wisconsin_construction_impact_report_103122.pdf.

United States Environmental Protection Agency. NEPAssist Tool. Accessed December, 2025.
<https://www.epa.gov/nepa/nepassist>.

WGNHS., 1999-04. Plate 1: Water-table Elevation and Unlithified Aquifers in Dane County, Wisconsin. Wisconsin Geological and Natural History Survey. Scale: 1:100,000.

Wisconsin Department of Natural Resources. Southeast Glacial Plains Ecological Landscape. Accessed November 15, 2024. <https://dnr.wisconsin.gov/topic/lands/EcologicalLandscapes/SoutheastGlacialPlains>.

Wisconsin Department of Natural Resources. 2015. Ecological Landscapes of Wisconsin.
https://p.widencdn.net/2eiuef/Map_S1_ELs.

Wisconsin Department of Natural Resources. Surface Water Data Viewer. Accessed December, 2025.
<https://dnr.wisconsin.gov/topic/SurfaceWater/swdv>.

Wisconsin Department of Administration Division of Facilities Development. Sustainability Guidelines for Capital Projects. Version 6.0. July 22, 2024.
https://doa.wi.gov/DFDM_Documents/MasterSpecs/Sustainability/SustainabilityGuidelines.pdf.

Wisconsin Department of Agriculture, Trade, and Consumer Protection. Storage Tank Database. Accessed December, 2025. https://mydatcp.wi.gov/Home/ServiceDetails/4a171523-04c7-e611-80f6-0050568c4f26?Key=Services_Group.

Wisconsin Department of Natural Resources. RR Sites Map. Accessed December, 2025.
<https://dnr.wisconsin.gov/topic/Brownfields/rrsm.html>.

Wisconsin Historical Society. Wisconsin Historic Preservation Database. Accessed December, 2025.

Appendix A
Site Location Map and Photographs

Map: 0 970 1,940 Feet
0 280 560 Meters

Project Location: 925 Bascom Mall

AYRES

Figure 1-Project Location Map
A-24-012/0485-2501 Music Hall Renovation and Addition
University of Wisconsin-Madison
Madison, Wisconsin
December, 2025

23-1948.30

Source: Dane County GIS: Dane County, WI

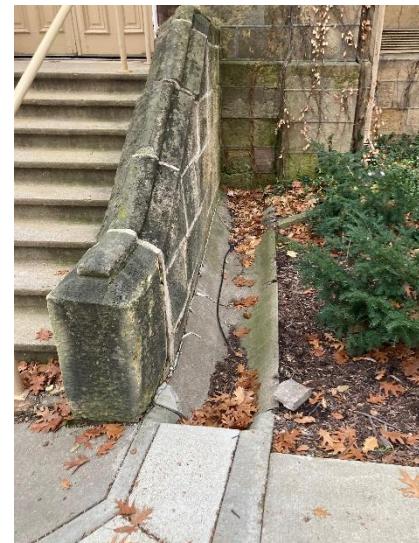
Figure 2-Project Aerial Map
Music Hall Renovation and Addition
925 Bascom Mall
Madison, Wisconsin
December 2025

Project Location:

23-1948.30

AYRES
ENVIRONMENTAL

Music Hall (north side)


Stairs (north side)

Music Hall sign and vent

Main entrance

Storm water drainage

Music Hall (west side)

Landscaping, drainage and utilities (west side)

Window wells

Sanitary sewer manhole

Music Hall (south side)


Storm inlet from path west of Music Hall

Parking lot and rear entrance

Concrete walk

Concrete walk & drainage

Music Hall (east side)

Structural supports (southeast corner)

Lawn (facing south)

Utilities (east lawn)

Chadbourne Hall

Pedestrian bridge

Law Building picnic area adjacent to Music Hall

Bascom Hill

Appendix B
Preliminary Project Plans

KIERAN TIMBERLAKE

Music Hall Renovation + Addition

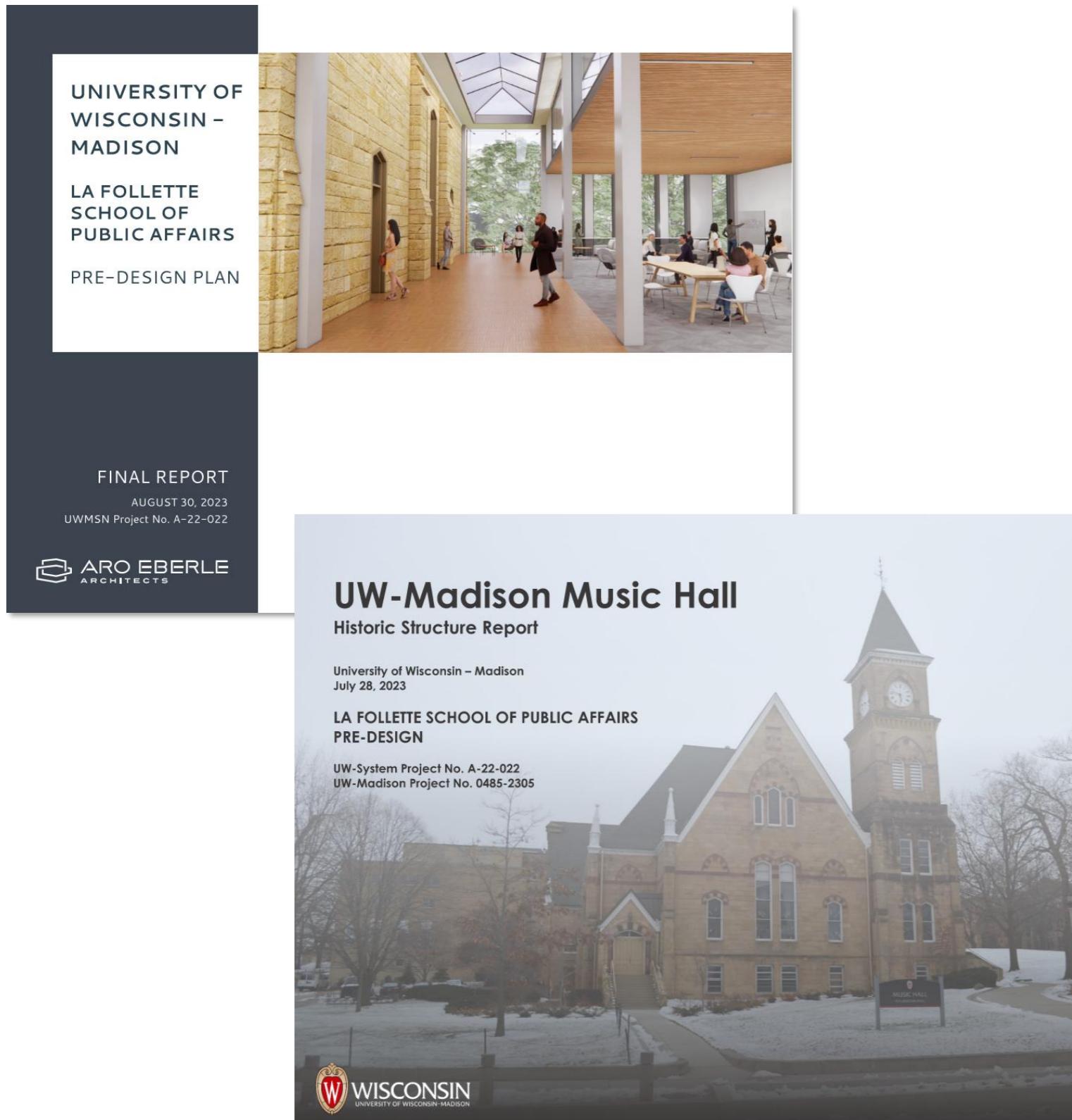
University of Wisconsin-Madison

Who We Are

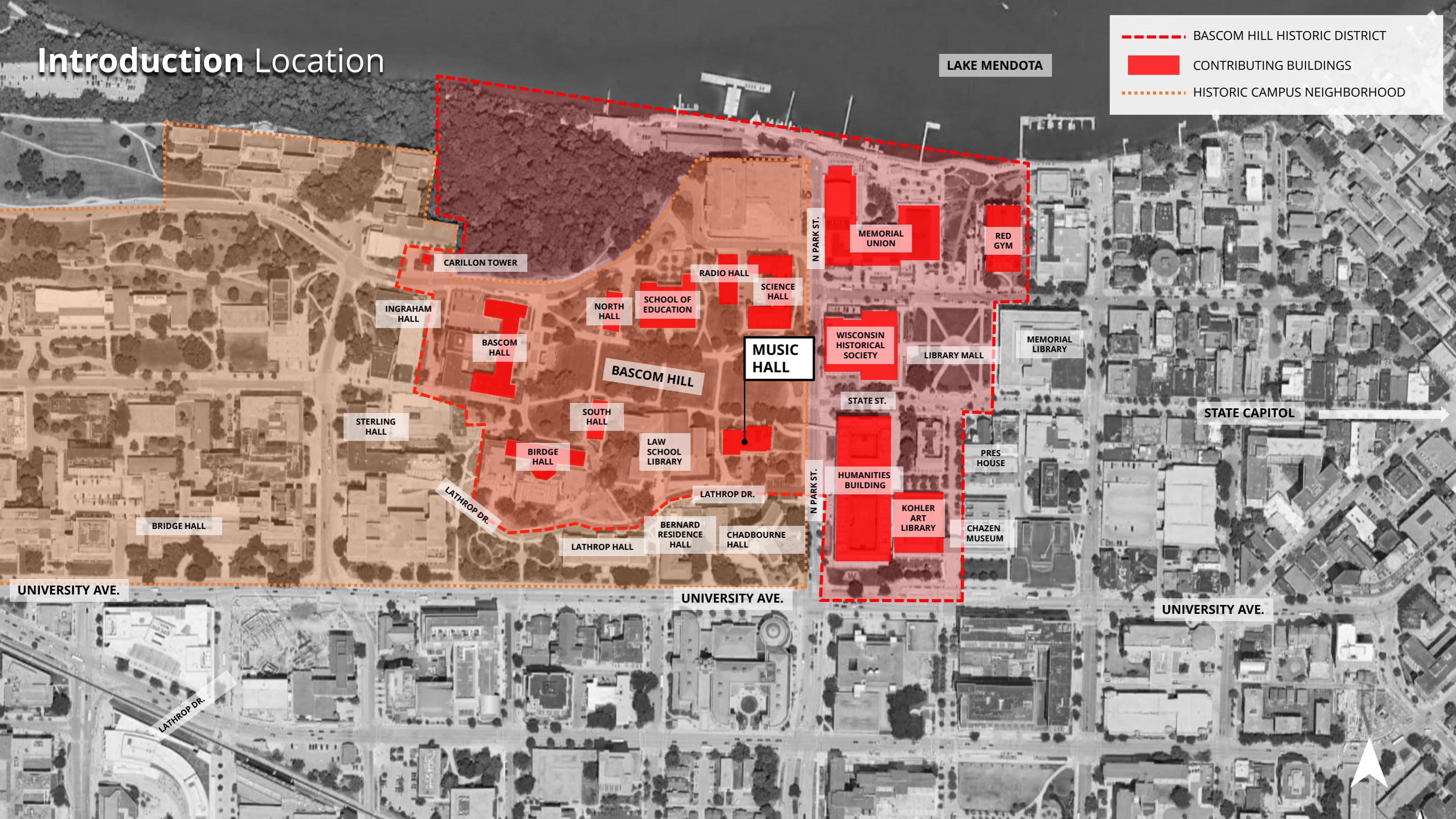
KieranTimberlake

Founded in 1984, KieranTimberlake brings together the experience and talents of roughly 90 professionals of diverse backgrounds and abilities in a practice that is recognized worldwide with special expertise in education, government, arts and culture, civic, and residential projects.

Stephen Kieran, FAIA
Founding Principal



Jason Smith, FAIA
Senior Principal


Tim Peters
Principal

Introduction Project History

- As part of a pre-design planning study completed Summer 2023, this project was previously presented to the DRB for initial review/feedback.
- The Final Pre-Design Report and Historic Structure report were completed by Aro Eberle Architects and River Architects – these deliverables have served as a foundation, to provide a baseline program and a reference for evaluation of the historic building.
- Building upon this previous study, additional analysis, research, exploratory work in the field, and stakeholder engagement have shaped the current vision and trajectory of the project.


Introduction Location

Introduction Bascom Hill

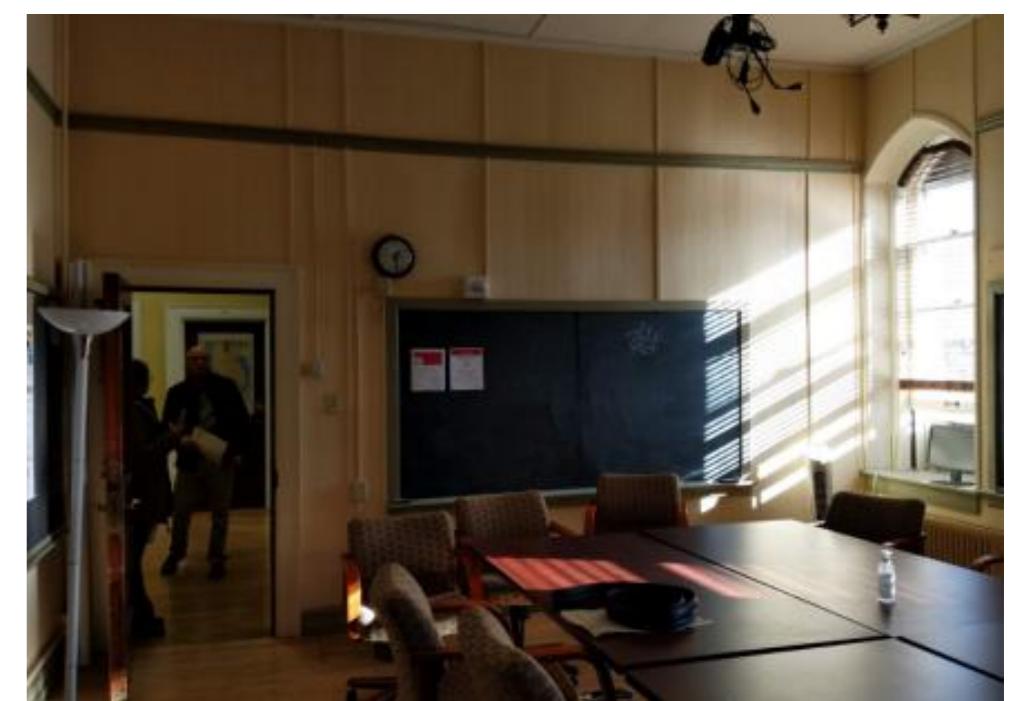
Introduction Historic Building

ca. 1915
A print based on a hand-colored photograph of Music Hall on the University of Wisconsin-Madison campus from the early twentieth century.

ca. 1890
View of Music Hall and Library Hall

- Music Hall (originally named “Assembly Hall”) was constructed in 1878-1880 as an assembly space for the entire student body and to provide a home for the university’s library.
- The building is constructed using load-bearing masonry construction with wood and timber framing. It is finished with beige, coursed Madison sandstone, with Lake Superior red sandstone accents.
- The historic building contributes to the Bascom Hill Historic District.
- Previous exterior modifications include added/reduced window and door openings, and removal of architectural details like skylights and masonry ornaments.
- Previous interior modifications have been extensive over time, with the auditorium and connector substantially modified most recently in 1985; the former library largely reflects a 1916 renovation.

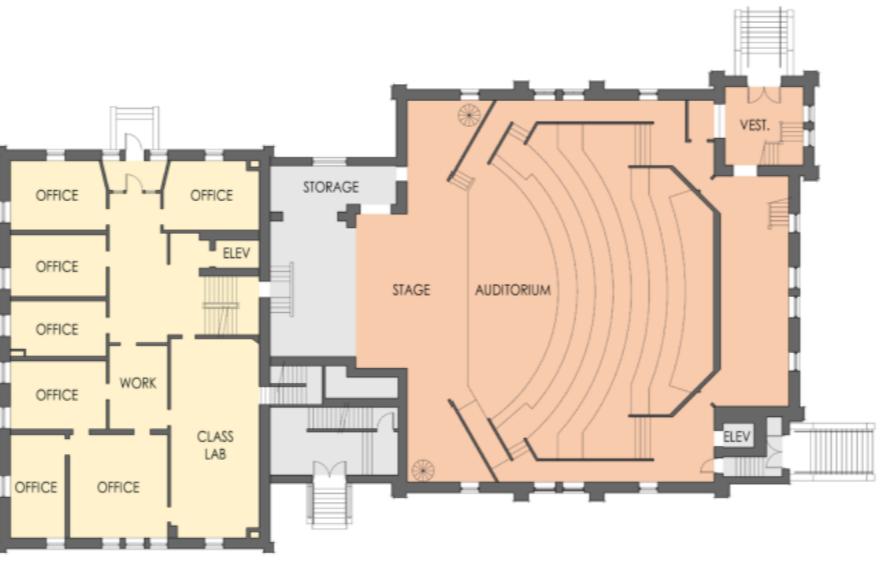
Introduction Historic Building



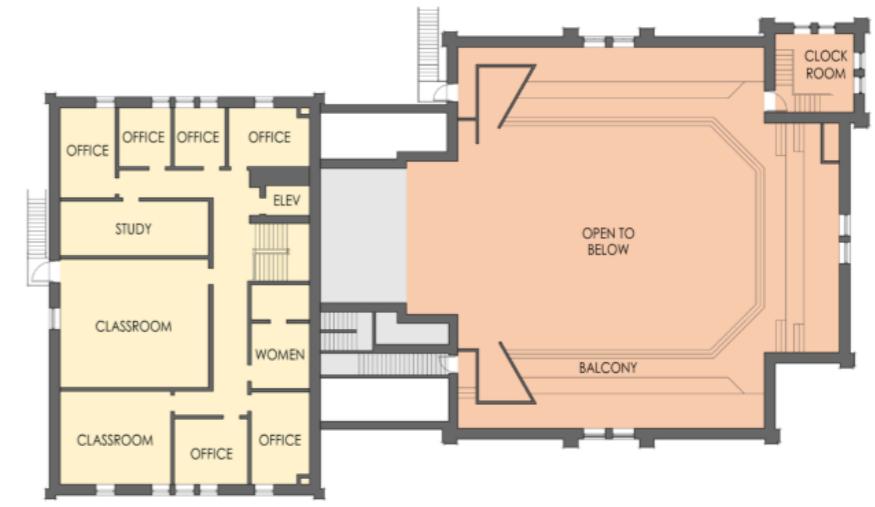
ca. 1914
Interior of Auditorium

ca. 1892
Interior of Library Hall

Introduction Historic Building Today



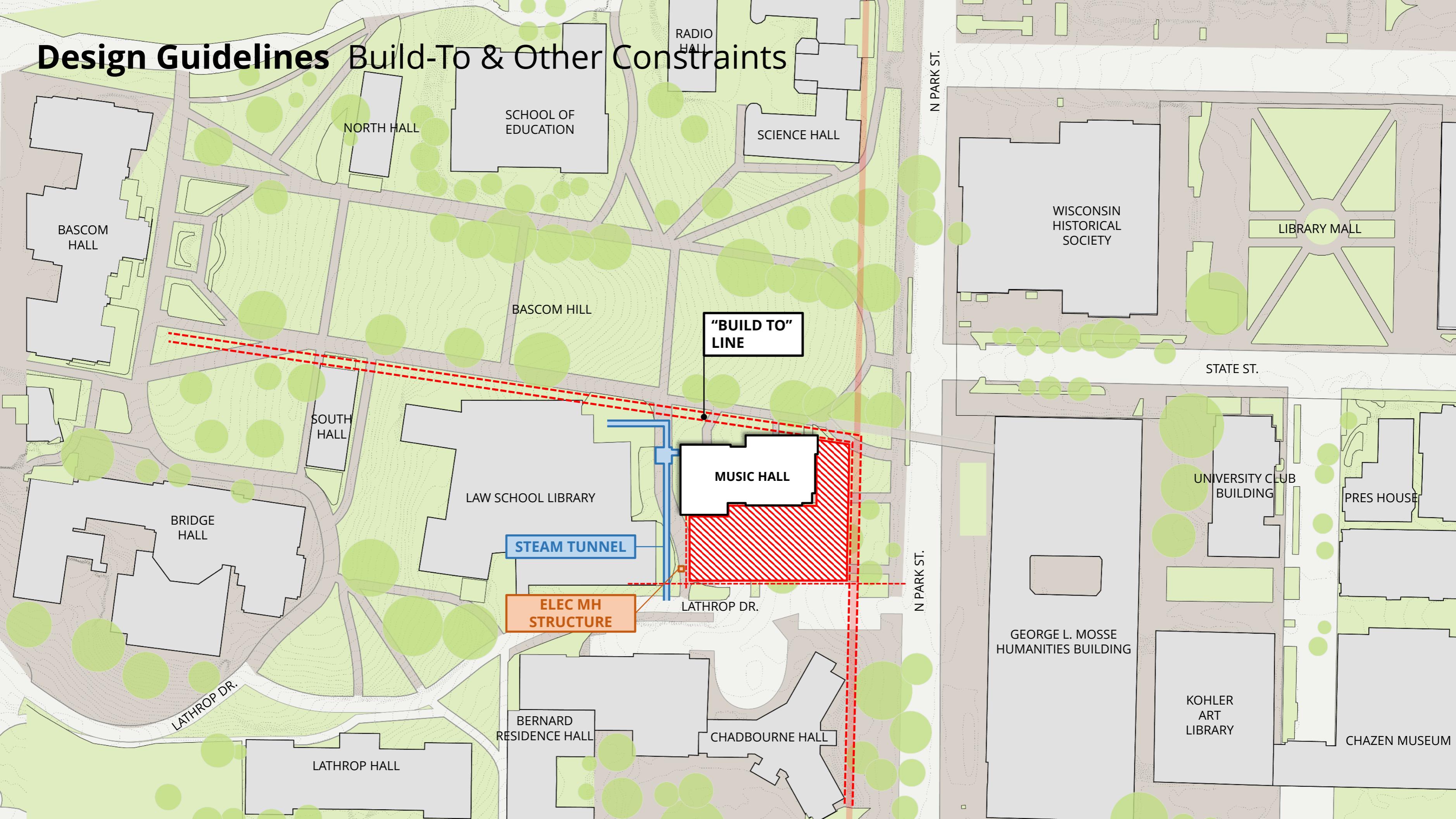
Historic Preservation


PRIORITY 1
PRIORITY 2
PRIORITY 3

Level 0



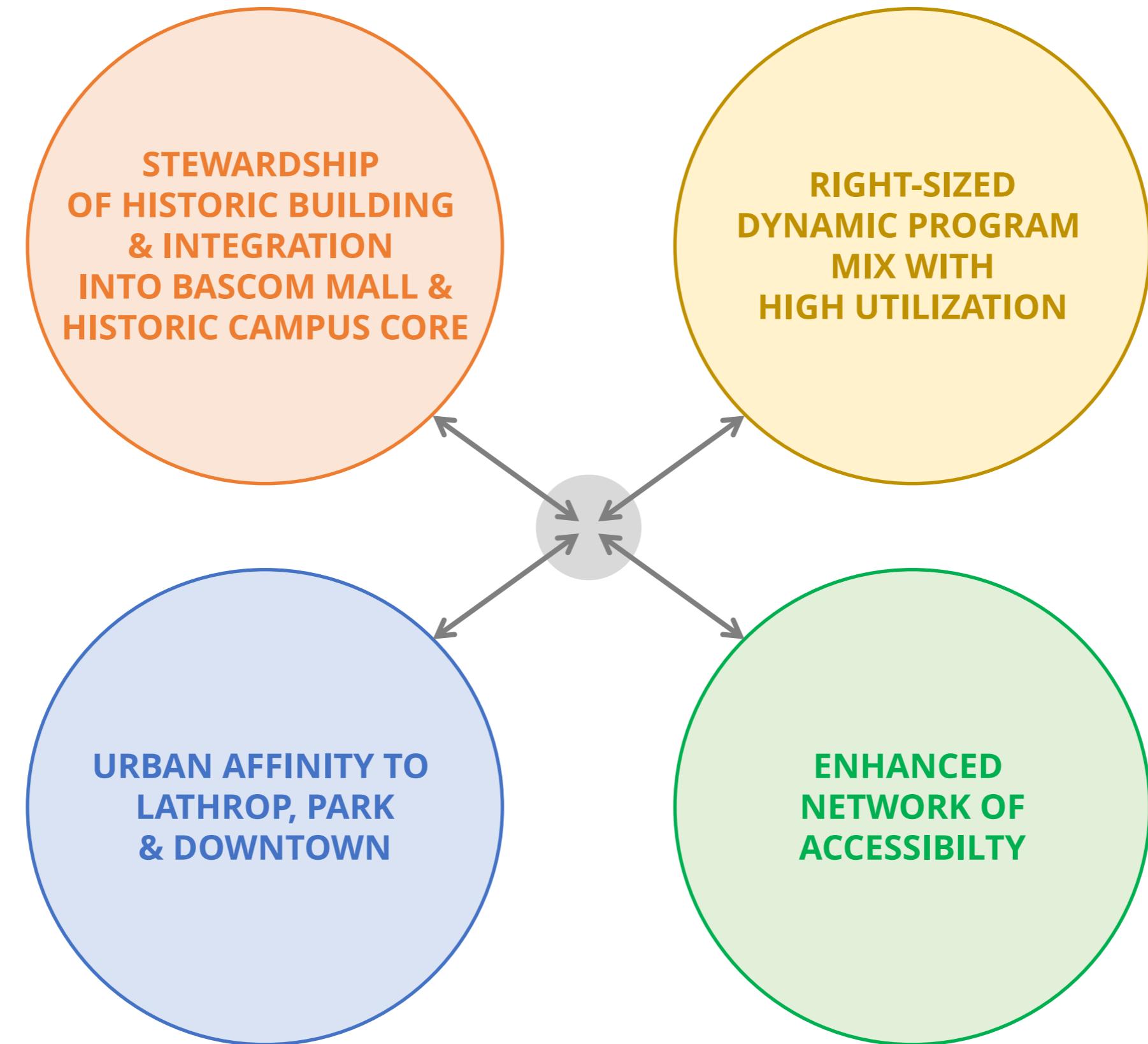
Level 1


Level 2

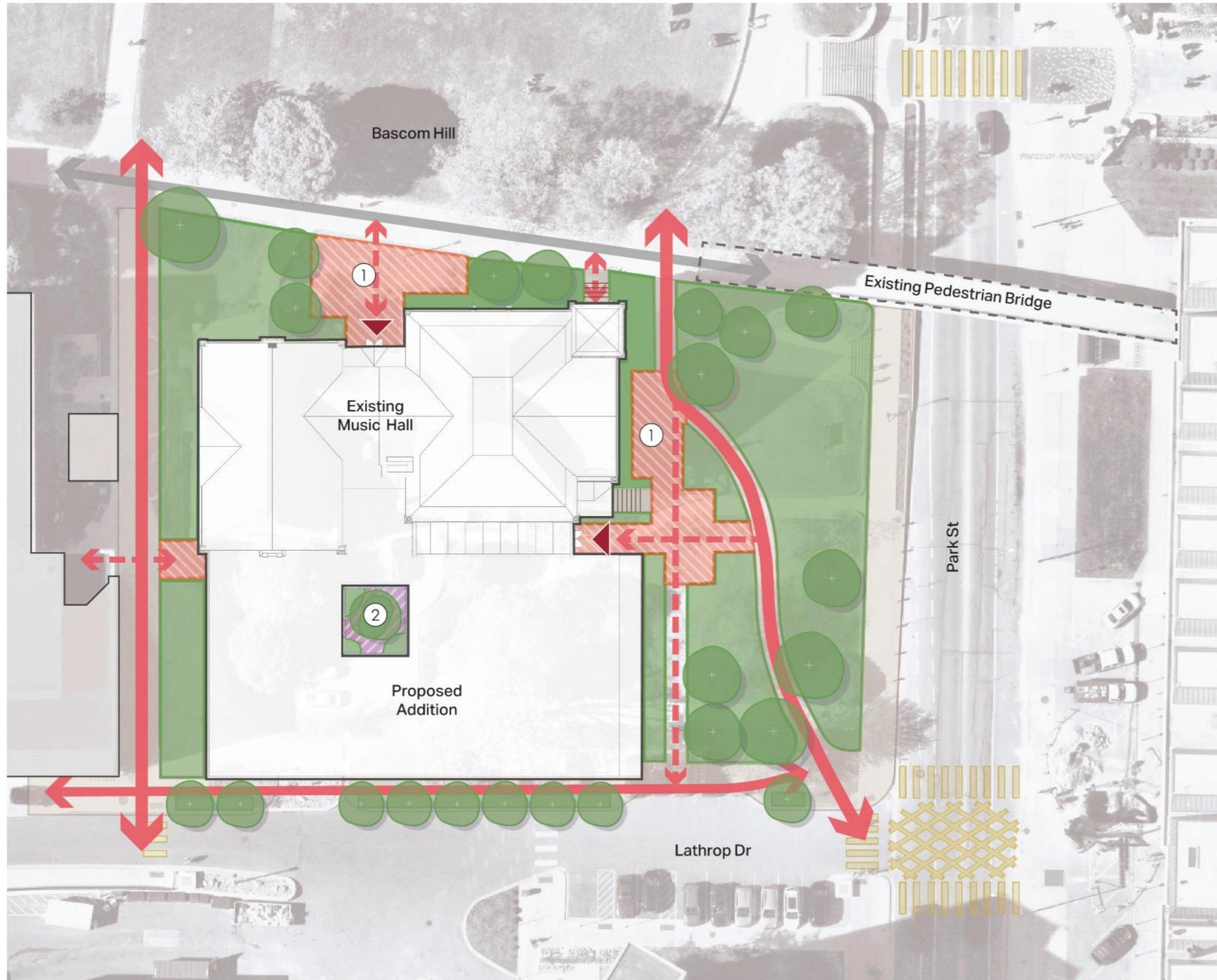
Current Building Plans

Elevations of Original Construction

Design Guidelines Build-To & Other Constraints


Project Vision & Goals

A new home for the La Follette School of Public Affairs will embody democratic ideals, balance public access with departmental needs, and create welcoming, flexible environments for students, faculty, and the community. By adaptively reusing Music Hall, the design will honor the past while providing bright, functional, and future-ready spaces that foster connection, collaboration, and the Wisconsin Idea.

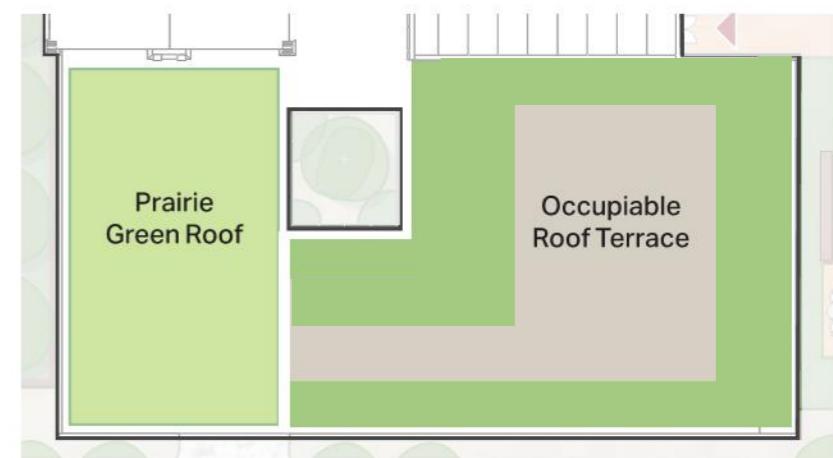

- Physically Embody the Identity of the La Follette School
- Engage the Community at Multiple Scales
- Balance Public Access with LFS Needs
- Create Spaces Where People Will Want to Stay
- Respect the Past while Designing for the Future

Design Drivers

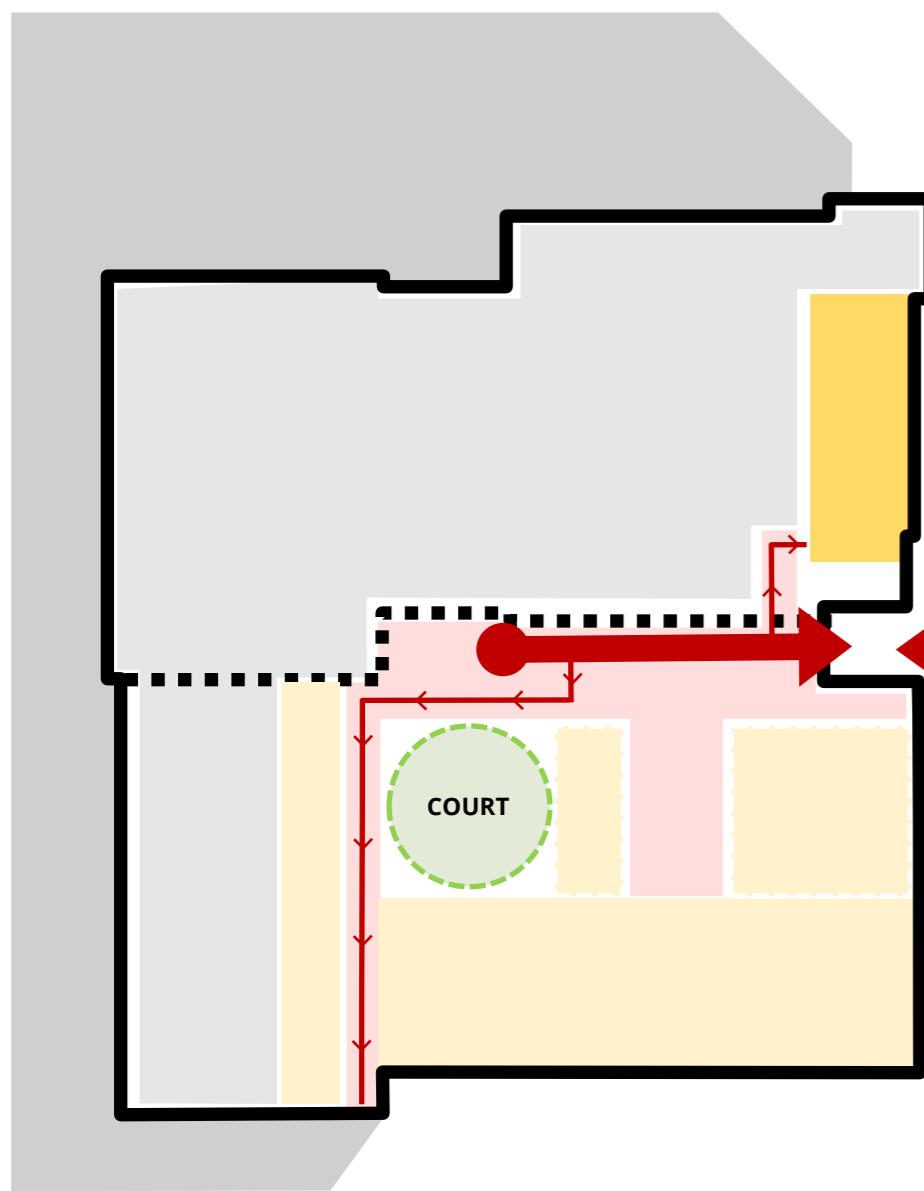
Site Plan Diagram

Plan Legend

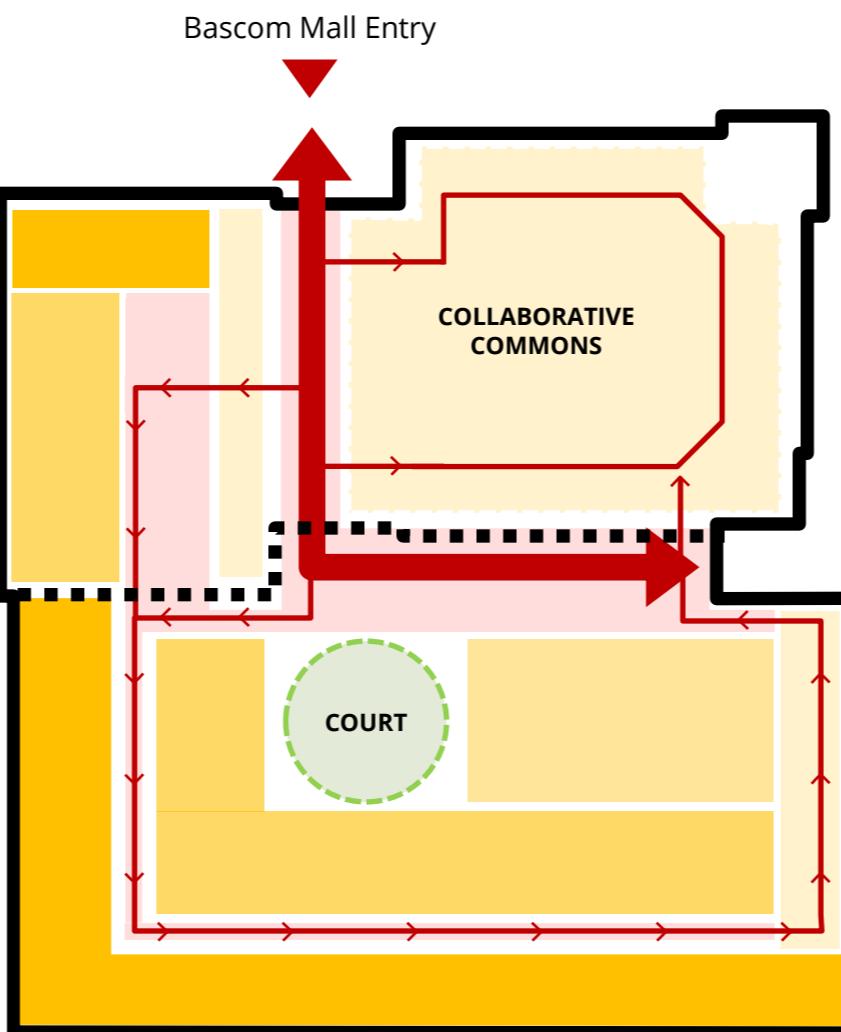
- Primary Circulation
- Secondary Circulation
- ▼ Primary entry
- ▨ Terrace
- ▨ Courtyard
- ▨ Planting area
- ▨ Proposed tree

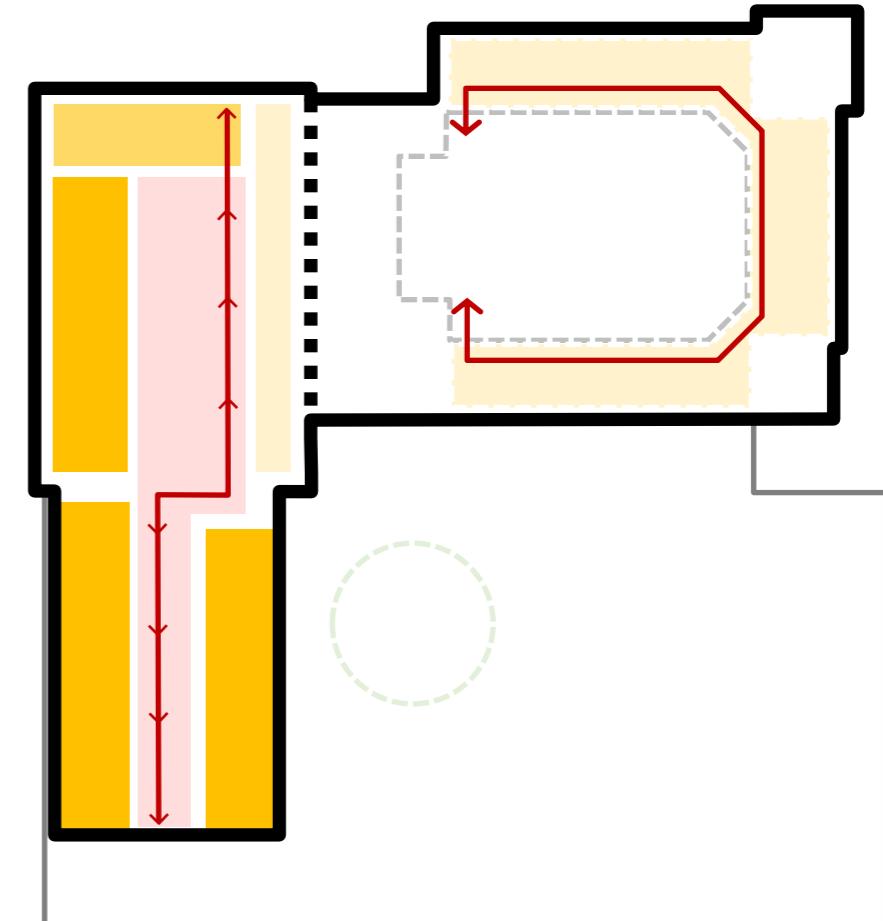

Big Idea

Expansive, outward-looking gathering spaces that connect to campus context.


Takeaways

- 1 The site prioritizes generous, **flexible open spaces** that align with the civic scale of Bascom Hill and North Park Street, supporting campus gatherings, events, and everyday student life.
- 2 A **central courtyard** "gem" offers contrast: a more intimate, crafted space that acts as a visual anchor, supports wayfinding, and provides a quieter place of rest and reflection.

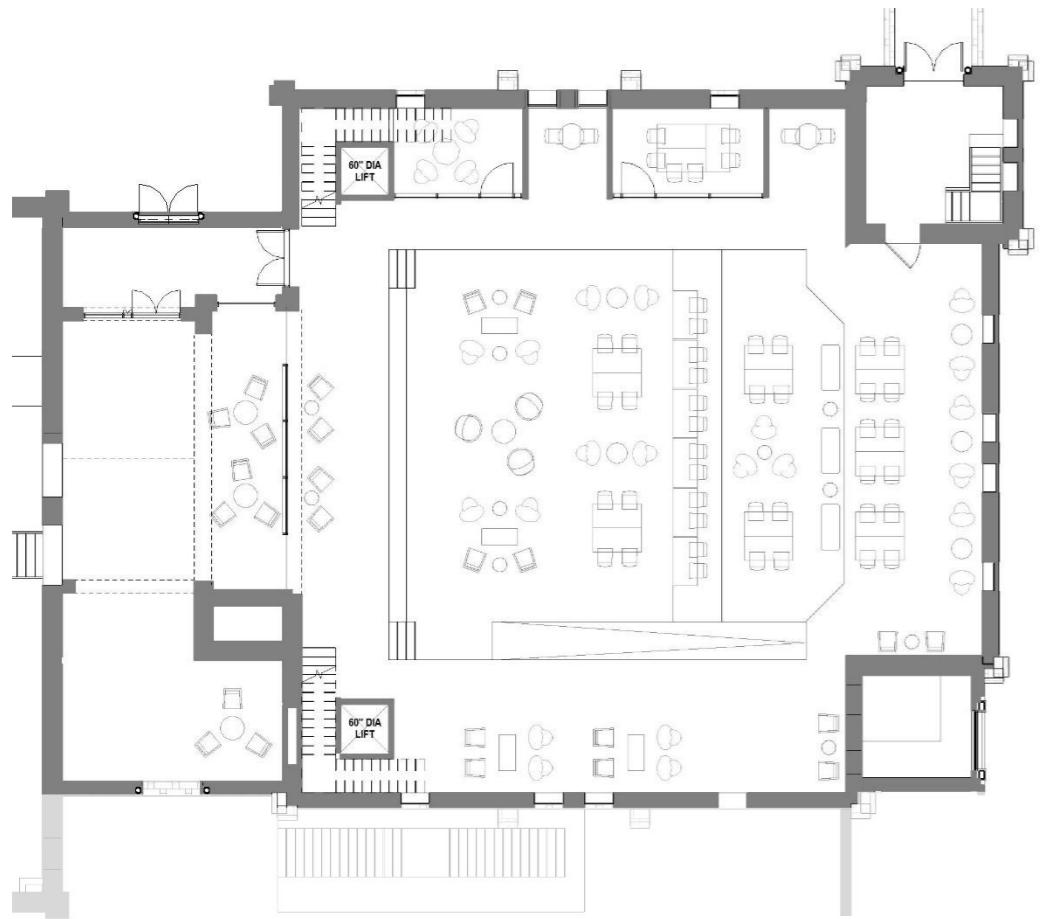

Roof Landscape


Concept Refinement Circulation & Program Zones

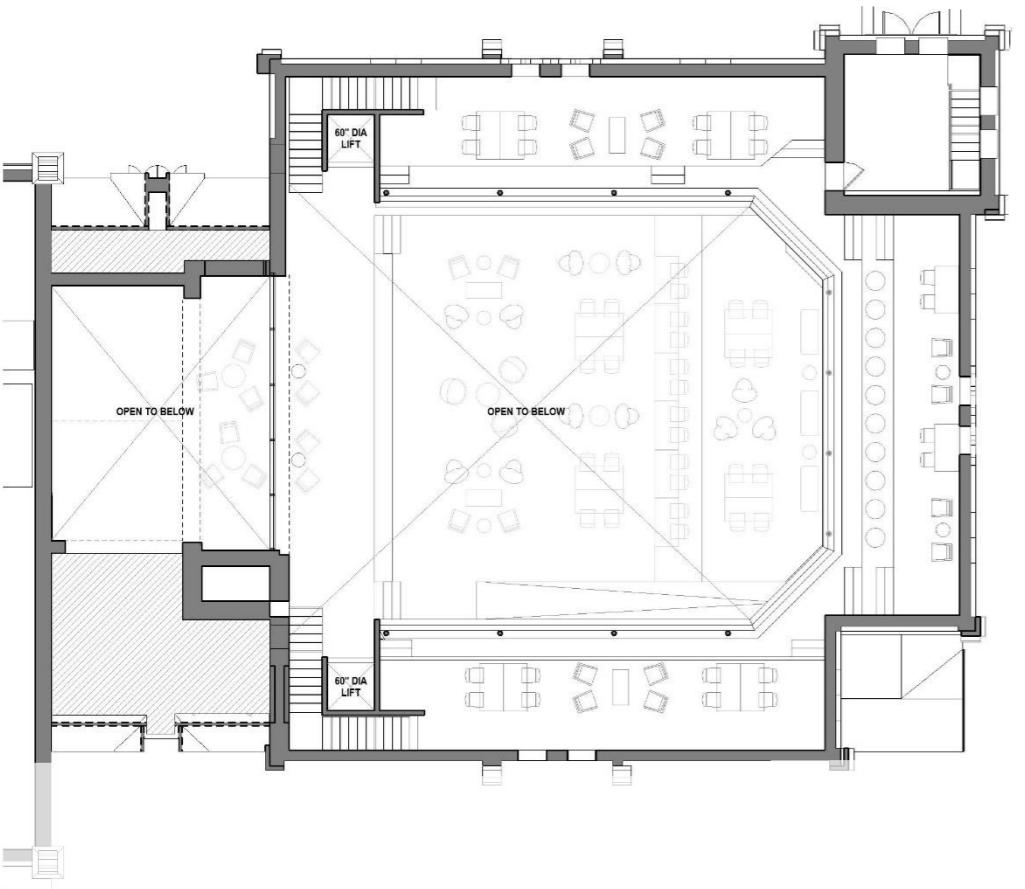
Level 0

Level 1

Level 2

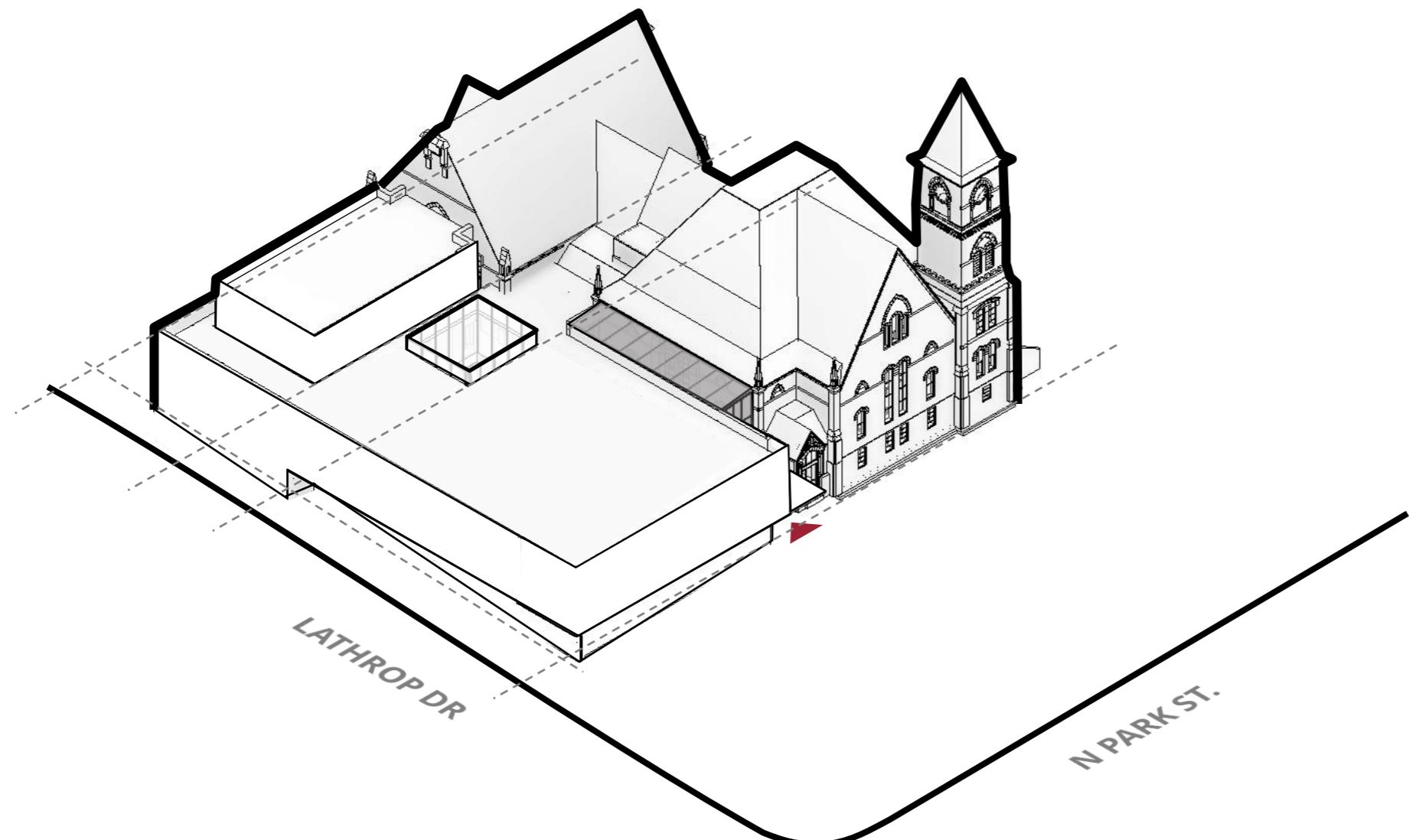

PRIVATE

PUBLIC



Commons in Historic Assembly Hall


LEVEL 1


LEVEL 2

Concept Refinement Bascom Mall Entry

Massing Approach

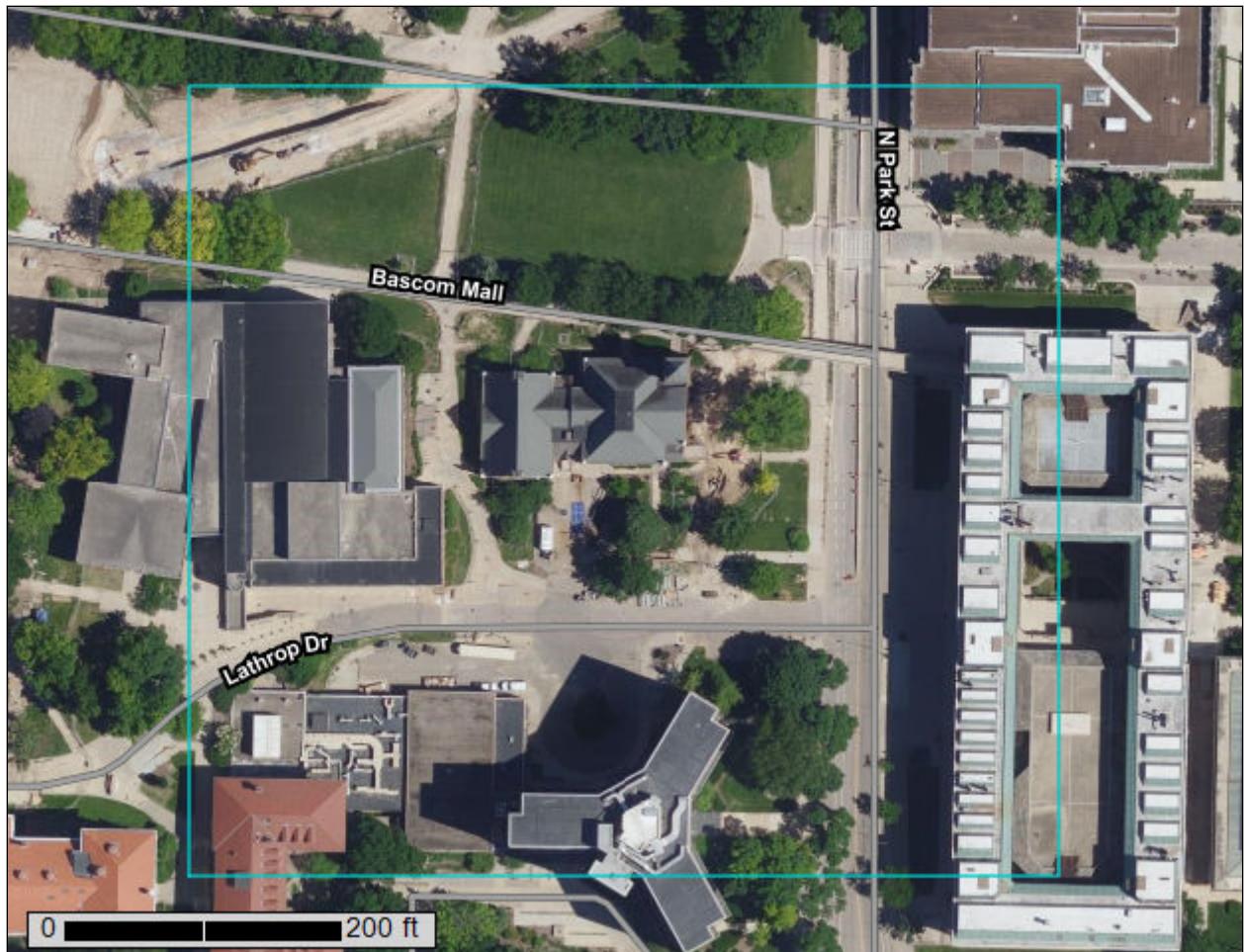
- East face of addition at L0 aligns with east face of Music Hall
- Addition at L1 extends east and addition at L0 pushes inward, to create overhang at grade
- L2 addition pulls in from existing Library roof line, extending program bar and allowing for roof access
- Remaining roof is held below the Music Hall eave line

KIERAN TIMBERLAKE

Music Hall Renovation + Addition

University of Wisconsin-Madison

Appendix C
Existing Environment Research


United States
Department of
Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Dane County, Wisconsin

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (<http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/>) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (<https://offices.sc.egov.usda.gov/locator/app?agency=nrcs>) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface.....	2
How Soil Surveys Are Made.....	5
Soil Map.....	8
Soil Map.....	9
Legend.....	10
Map Unit Legend.....	11
Map Unit Descriptions.....	11
Dane County, Wisconsin.....	13
7105B—Batavia silt loam, gravelly substratum, 2 to 6 percent slopes.....	13
7124B—Dodge silt loam, 2 to 6 percent slopes.....	14
7310C2—McHenry silt loam, 6 to 12 percent slopes, eroded.....	16
References.....	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

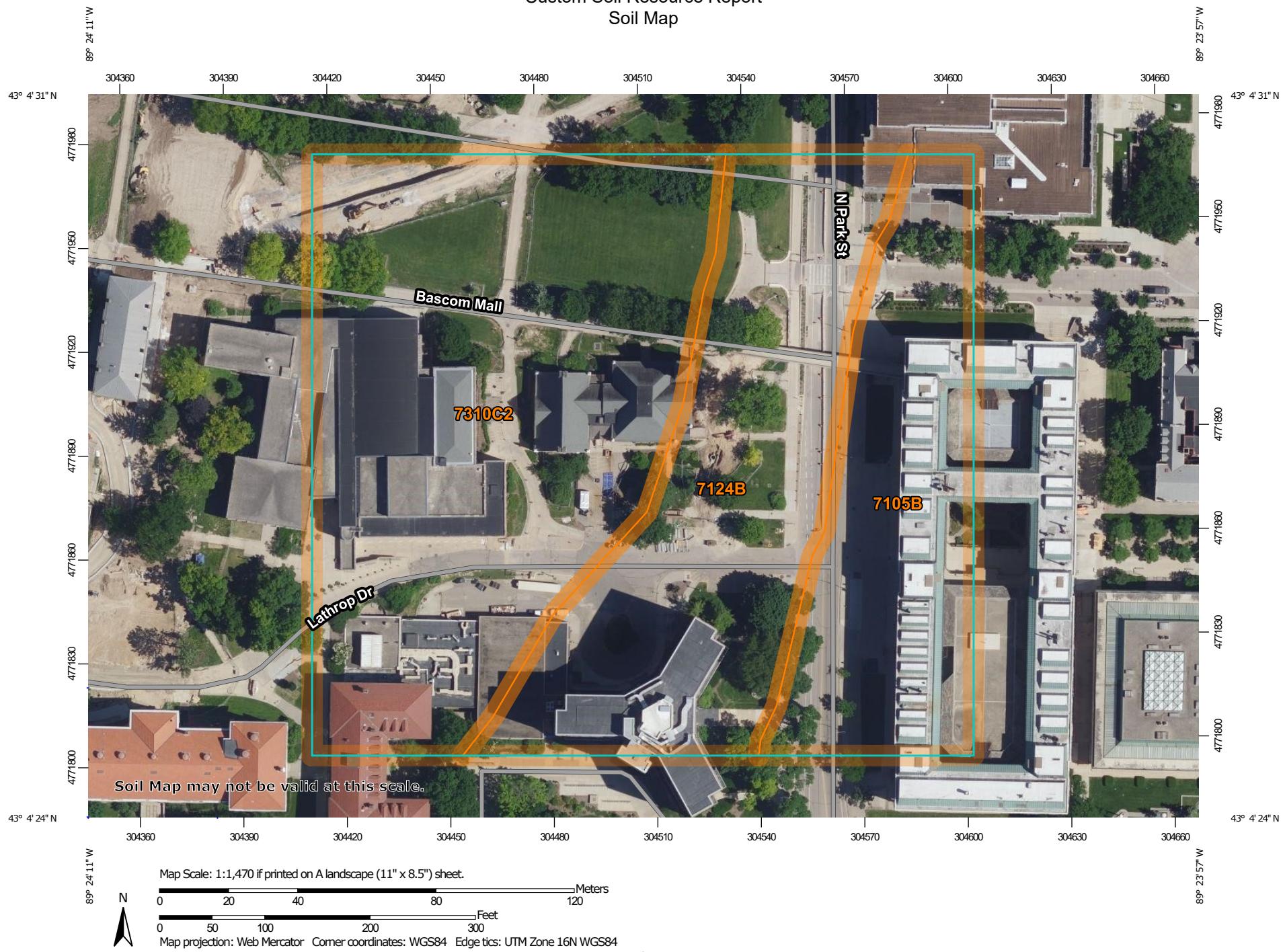
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

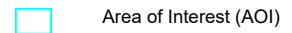
Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report


identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map


The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report
Soil Map

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

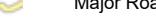
Wet Spot

Other

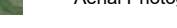
Special Line Features

Water Features

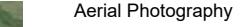
Streams and Canals


Transportation

Rails


Interstate Highways

US Routes



Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Dane County, Wisconsin

Survey Area Data: Version 24, Sep 10, 2025

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 13, 2020—Jul 31, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
7105B	Batavia silt loam, gravelly substratum, 2 to 6 percent slopes	1.8	21.3%
7124B	Dodge silt loam, 2 to 6 percent slopes	2.5	29.9%
7310C2	McHenry silt loam, 6 to 12 percent slopes, eroded	4.0	48.8%
Totals for Area of Interest		8.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Dane County, Wisconsin

7105B—Batavia silt loam, gravelly substratum, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: t919

Elevation: 340 to 1,200 feet

Mean annual precipitation: 28 to 33 inches

Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 135 to 160 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Batavia, gravelly substratum, and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Batavia, Gravelly Substratum

Setting

Landform: Outwash plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Deep loess over loamy outwash

Typical profile

H1 - 0 to 10 inches: silt loam

H2 - 10 to 44 inches: silty clay loam

H3 - 44 to 50 inches: gravelly clay loam

H4 - 50 to 60 inches: gravelly coarse sand

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F095XB010WI - Loamy and Clayey Upland

Forage suitability group: High AWC, adequately drained (G095BY008WI)

Other vegetative classification: High AWC, adequately drained (G095BY008WI)

Hydric soil rating: No

Minor Components

Kegonsa

Percent of map unit: 5 percent
Landform: Outwash plains
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F095XB010WI - Loamy and Clayey Upland
Other vegetative classification: High AWC, adequately drained (G095BY008WI)
Hydric soil rating: No

Virgil, gravelly substratum

Percent of map unit: 3 percent
Landform: Outwash plains
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F095XB005WI - Moist Loamy or Clayey Lowland
Other vegetative classification: High AWC, high water table (G095BY007WI)
Hydric soil rating: No

Port byron, moderately well drained

Percent of map unit: 2 percent
Landform: Valley sides
Landform position (two-dimensional): Toeslope
Down-slope shape: Concave
Across-slope shape: Linear
Ecological site: R105XY014WI - Mollie Clayey Upland
Other vegetative classification: High AWC, adequately drained (G105XY008WI)
Hydric soil rating: No

7124B—Dodge silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2szfp
Elevation: 830 to 1,090 feet
Mean annual precipitation: 31 to 35 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 127 to 181 days
Farmland classification: All areas are prime farmland

Map Unit Composition

Dodge and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dodge

Setting

Landform: Drumlins
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loess over calcareous loamy till

Typical profile

Ap - 0 to 6 inches: silt loam
BE - 6 to 9 inches: silt loam
Bt1 - 9 to 29 inches: silty clay loam
2Bt2 - 29 to 40 inches: clay loam
2C - 40 to 79 inches: gravelly sandy loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: C
Ecological site: F095XB007WI - Loamy Upland with Carbonates
Forage suitability group: High AWC, adequately drained (G095BY008WI)
Other vegetative classification: High AWC, adequately drained (G095BY008WI)
Hydric soil rating: No

Minor Components

St. charles

Percent of map unit: 8 percent
Landform: Drumlins
Ecological site: F095XB010WI - Loamy and Clayey Upland
Hydric soil rating: No

Mayville

Percent of map unit: 5 percent
Landform: Drumlins
Ecological site: F095XB010WI - Loamy and Clayey Upland
Hydric soil rating: No

Lamartine

Percent of map unit: 2 percent
Landform: Drumlins
Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope
Down-slope shape: Concave
Across-slope shape: Linear
Ecological site: F095XB005WI - Moist Loamy or Clayey Lowland
Hydric soil rating: No

7310C2—McHenry silt loam, 6 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2tjyt
Elevation: 750 to 1,540 feet
Mean annual precipitation: 31 to 37 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 110 to 174 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Mchenry, eroded, and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mchenry, Eroded

Setting

Landform: Moraines
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Loess over loamy till

Typical profile

Ap - 0 to 6 inches: silt loam
Bt1 - 6 to 22 inches: silty clay loam
2Bt2 - 22 to 31 inches: loam
2Bt3 - 31 to 36 inches: fine sandy loam
2C - 36 to 79 inches: gravelly sandy loam

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: F095XB010WI - Loamy and Clayey Upland
Forage suitability group: High AWC, adequately drained (G095BY008WI)
Other vegetative classification: High AWC, adequately drained (G095BY008WI)
Hydric soil rating: No

Minor Components

Kidder, eroded

Percent of map unit: 5 percent
Landform: Moraines
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Ecological site: F095XB010WI - Loamy and Clayey Upland
Other vegetative classification: Mod AWC, adequately drained (G095BY005WI)
Hydric soil rating: No

Kendall

Percent of map unit: 5 percent
Landform: Drainageways
Landform position (two-dimensional): Foothslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Ecological site: F095XB005WI - Moist Loamy or Clayey Lowland
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. <http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084>

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

National Flood Hazard Layer FIRMette

89°24'23"W 43°4'41"N

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS

- Without Base Flood Elevation (BFE) Zone A, V, A99
- With BFE or Depth Zone AE, AO, AH, VE, AR
- Regulatory Floodway

- 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X
- Future Conditions 1% Annual Chance Flood Hazard Zone X
- Area with Reduced Flood Risk due to Levee. See Notes. Zone X
- Area with Flood Risk due to Levee Zone D

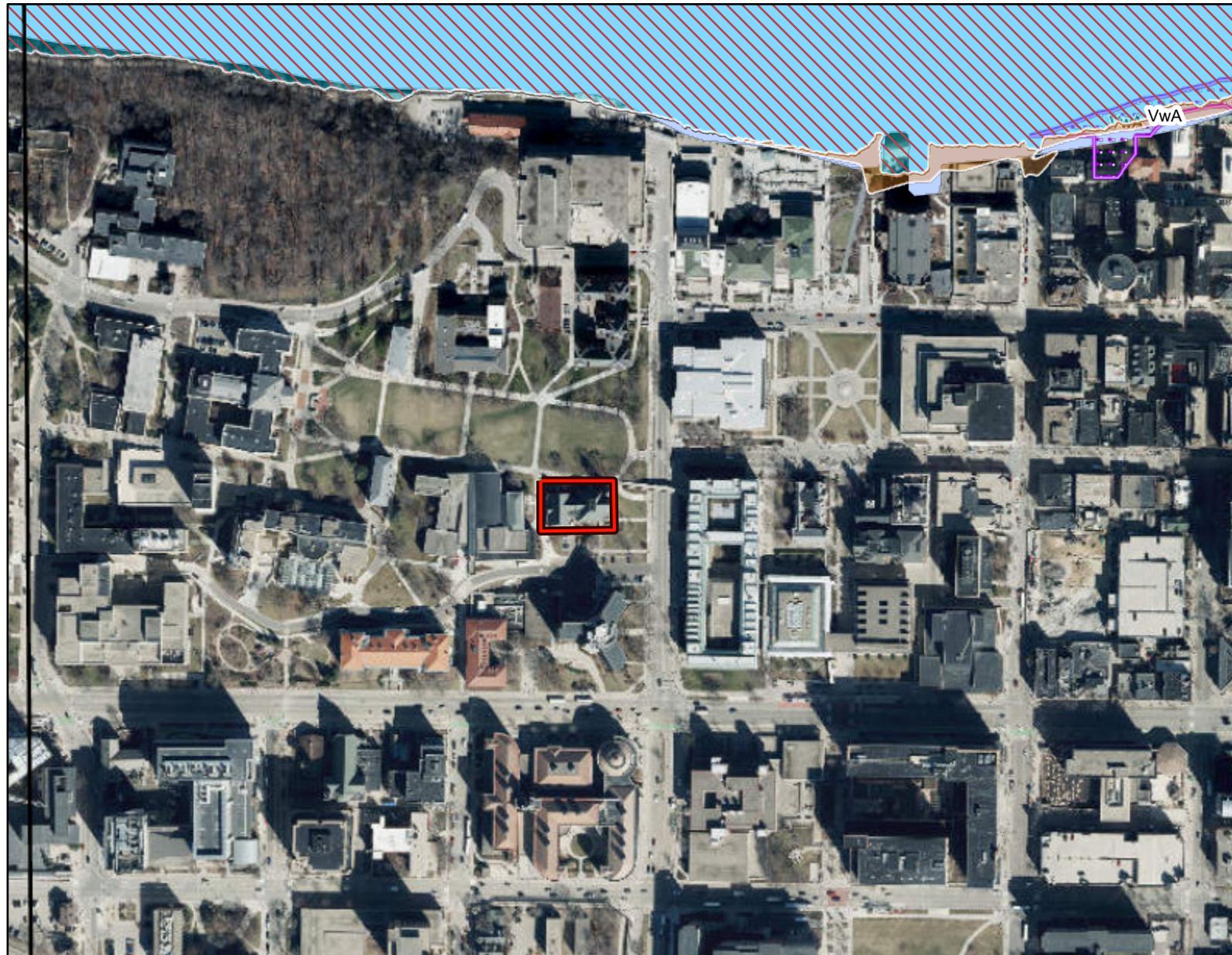
- NO SCREEN Area of Minimal Flood Hazard Zone X
- Effective LOMRs

- Area of Undetermined Flood Hazard Zone D

- Channel, Culvert, or Storm Sewer
- Levee, Dike, or Floodwall

- 20.2 Cross Sections with 1% Annual Chance
- 17.5 Water Surface Elevation
- 8 - - - Coastal Transect
- ~~~ 513 ~~~ Base Flood Elevation Line (BFE)
- Limit of Study
- Jurisdiction Boundary
- Coastal Transect Baseline
- Profile Baseline
- Hydrographic Feature

- Digital Data Available
- No Digital Data Available
- Unmapped


The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/18/2025 at 4:01 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Wetlands, Indicators, and Floodplains

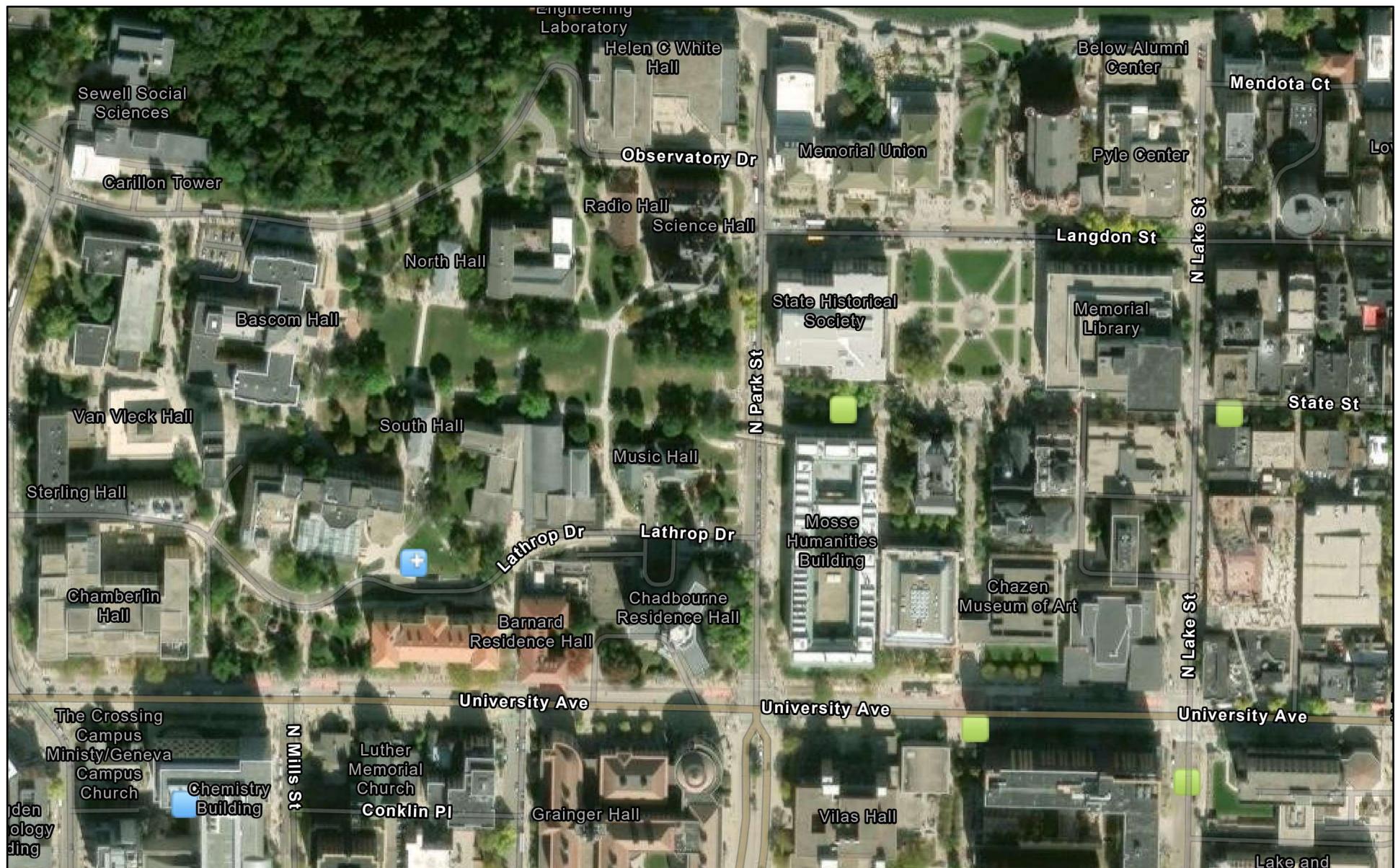
Legend: (some map layers may not be displayed)

- FIRM Panels
- Flood Hazard Boundaries
- SFHA / Flood Zone Boundary
- Flood Hazard Zones
- 1% Annual Chance Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Floodplain Storage
- Wetland Indicators
- Wetland Class Points
- Wetland too small to delineate
- Wetland Indicators
- Open Water
- 24K Lakes and Open Water

Notes:

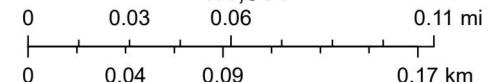
Map: 0 330 660 Feet
0 90 180 Meters

Service Layer Credits:


Wetland Indicators & Soils[^]: Surface Water Data Viewer Team, Digital FEMA Floodplains (National Flood Hazard Layer)^{*}; , Latest Leaf Off: , DNR: WI Lands Vector Tile Layer: , Paper FIRMS: Federal Emergency Management Agency, Wisconsin Department of Natural Resources, Surface Water (Cached): WI DNR, USGS, and other data, Wetland Inventory NWI (Dynamic): Calvin Lawrence, Dennis Weise, Nina Rihn

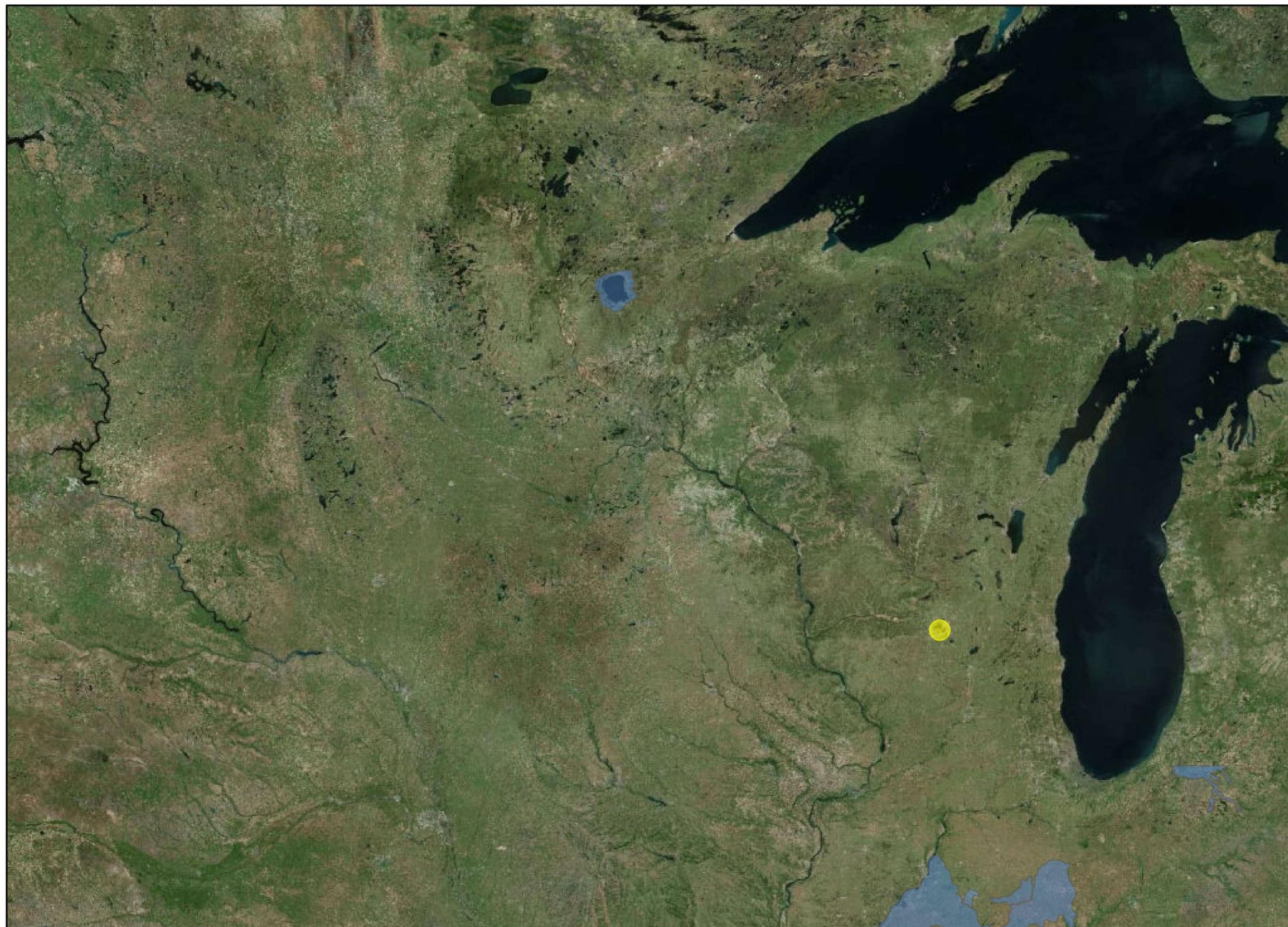
This map is a product generated by a DNR web mapping application.

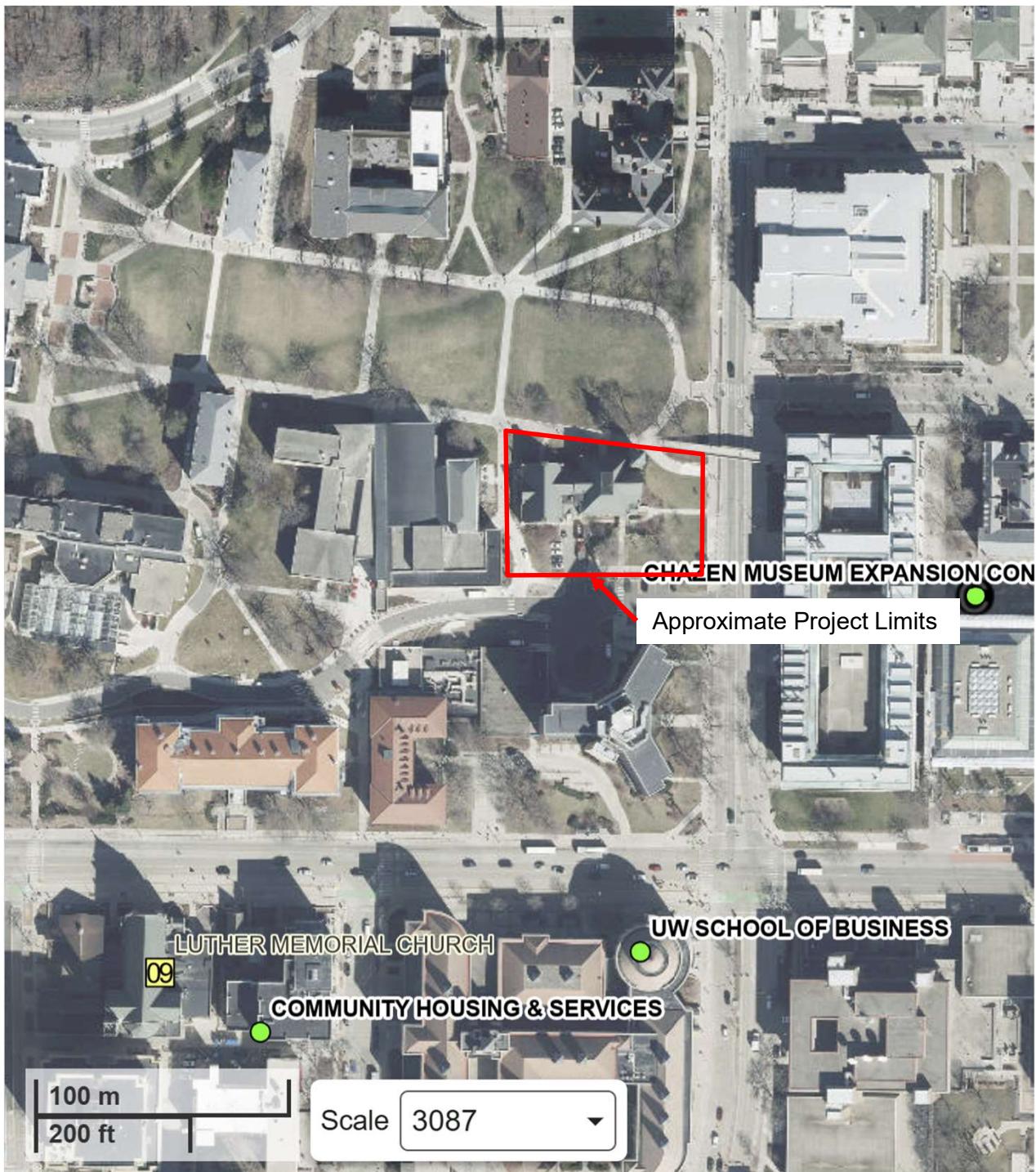
This map is for informational purposes only and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. The user is solely responsible for verifying the accuracy of information before using for any purpose. By using this product for any purpose user agrees to be bound by all disclaimers found here: <https://dnr.wisconsin.gov/legal>


Date Printed: 11/18/2025 9:46 AM

NEPAssist Tool

November 26, 2025


1:4,514



- Hazardous Waste (RCRAInfo)
- Water Dischargers (NPDES)
- +■ Water Dischargers (NPDES)

Vantor, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community

ArcGIS Web Map

Source: WDNR RR Sites Map

WDNR Bureau for Remediation and Redevelopment Tracking System
Music Hall Renovation and Addition
University of Wisconsin-Madison
Madison, Wisconsin
November 2025

23-1948.30

AYRES
ENVIRONMENTAL

Appendix D
Endangered Resources Review

Kaufmann-Luft, Pete

From: DNR ER Review <DNRERReview@wisconsin.gov>
Sent: Tuesday, December 2, 2025 10:09 AM
To: Kaufmann-Luft, Pete
Cc: Seipel, Logan; Banach, Mitchell
Subject: RE: ERR Request: Music Hall Addition and Renovation
Attachments: musicaladdition1700-079.pdf

Dear Pete,

The **Music Hall Addition and Renovation** project is covered by Table 2 of the [Broad Incidental Take Permit/Authorization for No/Low Impact Activities \(No/Low BITP/A\)](#). A formal ER Review letter is not needed, and no actions are needed to comply with Wisconsin endangered species laws. Any take that may result from the proposed project is permitted/authorized, and the ER Review fee is waived.

Specifically, the project is covered by Activity 2-A1: Any activity performed entirely within in urban/residential areas, manicured lawn or other artificial/paved surface. *Please note: Table 2 is for use by DNR Staff and ER Certified Reviewers only and is not available online.* The No/Low BITP/A applies to projects determined by the DNR to have no impact, or only minimal impact, on endangered and threatened species in the state.

Attached is an ER Review Verification Form for you to keep on file and submit with any other necessary DNR permit applications to indicate that ER requirements have been met. This notice only addresses endangered resources issues. It does not constitute DNR authorization of the project and does not exempt the project from securing necessary permits and approvals from the DNR or other permitting authorities.

Please feel free to contact me if you have any questions.

Thanks,
Angela

Angela White
Phone: 608-266-5241
angelal.white@wisconsin.gov

Our core values include professionalism, integrity, and customer service.
Please visit our [survey](#) to provide feedback on your experience interacting with any DNR employee.

From: Kaufmann-Luft, Pete <KaufmannP@AyresAssociates.com>
Sent: Monday, December 1, 2025 7:22 PM
To: DNR ER Review <DNRERReview@wisconsin.gov>
Cc: Seipel, Logan <seipell@ayresassociates.com>; Banach, Mitchell <BanachM@AyresAssociates.com>
Subject: ERR Request: Music Hall Addition and Renovation

**CAUTION: This email originated from outside the organization.
Do not click links or open attachments unless you recognize the sender and know the content is safe.**

Hello,

Please find the endangered resources review request form and supporting documents attached. Feel free to contact me with any questions about the project.

Thank you

**Pete Kaufmann-Luft
Environmental Scientist**

3433 Oakwood Hills Parkway | Eau Claire, WI 54701-7698

Office: 715.834.3161 | **Direct:** 715.831.7545

Ayres Associates Inc. | www.AyresAssociates.com

Ingenuity, Integrity, and Intelligence.

State of Wisconsin
Department of Natural Resources
Bureau of Natural Heritage Conservation
Endangered Resources Review Program
PO Box 7921, Madison WI 53707-7921
<https://dnr.wi.gov/topic/ERReview/>
DNRERReview@wisconsin.gov

Endangered Resources (ER) Review Verification

Broad Incidental Take Permit/Authorization for No/Low Impact Activities

Form 1700-079 (R 05/2024)

Notice: This form is authorized by s. 29.604, Wis. Stats. This completed signed form, once submitted to DNRERReview@wi.gov using the Submit by Email button at the bottom of the form, fulfills the requirement of an Endangered Resources Review and should be attached to other permits requiring an ER Review to show that Endangered Resources requirements have been met. Personal information collected on this form will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Public Records law [ss. 19.31-19.39, Wis. Stats.].

Instructions: Complete this form if your project is covered under the Broad Incidental Take Permit/Authorization for No/Low Impact Activities and therefore does not require an Endangered Resources Review.

Section 1: Applicant and Project Information

Requester Name Pete Kaufmann Luft	Organization or Agency Name AYRES			
Project Name Music Hall Addition and Renovation	County Dane	Township 07 N	Range 9	<input checked="" type="radio"/> E <input type="radio"/> W
DPS Project # (if applicable)	Telephone Number (715) 834-3161	Email Address KaufmannP@AyresAssociates.com		

Project Description

Phase I focuses on Site work, exterior envelope repairs, roof repair/replacement, mechanical, electrical, plumbing, fire life safety repairs and a complete interior renovation to meet La Follette's programmatic requirements. Interior renovation will modify the building so that it operates as one unified structure (where the present building operates like two distinct spaces). The space program for the existing building will include a large gathering space that is suitable for major public speakers (called "the Forum"), as well as other key programmatic spaces for the La Follette School. A clear entry on the Bascom Hill side of the existing building will welcome students and guests to the renovated building. This project replaces deteriorated stone and patching materials on each elevation of Music Hall (including the clock tower); replaces all gutters, downspouts, and flashing; and installs a new roof.

Indicate who you are completing this form as:

DNR Staff
 Certified Reviewer
 Other:

Section 2: Broad Incidental Take Permit/Authorization Coverage Information

How is your project covered under the Broad Incidental Take Permit/Authorization for No/Low Impact Activities?

It is included in the list of activities in Table 1 – No/Low Impact Table for All Species at All Times of the Year.
 It is included in the list of activities in Table 2 – No/Low Impact Table by Taxa Group for DNR Staff and ER Certified Reviewers Only and the Taxa groups for the species of concern are covered.
 It is included in the list of activities in Table 2 – No/Low Impact Table by Taxa Group for DNR Staff ER Certified Reviewers Only and the species of concern are covered by the Avoidance Measures document.

Activity Number(s)

2-A1: Any activity performed entirely within in urban/residential areas, manicured lawn or other artificial/paved surface.

Section 3: Applicant Certification

By my signature below, I certify that to the best of my knowledge, the information stated above is complete and accurate.

Angela White
Signature

12/2/2025
Date Signed

Angela White
Requester/Submitter Name (please print)

Leave Blank – DNR Use Only

Approved Denied

Approve/Deny Form

DNR Reviewer Name
Melissa Tumbleson

DNR Reviewer Date
12/02/2025

Appendix E
Document Distribution List

Environmental Impact Assessment Document Distribution List
 Music Hall Renovation Addition Project
 University of Wisconsin-Madison
 Project #A-24-012/0485-2501

Contact Name	Organization	Address Line 1	Address Line 2	City	State	Zip	E-mail Address	Scoping DEIS FEIS	DES RCD
Universities of Wisconsin System									
Dee Lundgren	Universities of Wisconsin, Associate Vice President	780 Regent St.	Suite 239	Madison	WI	53715	deelundgren@wiscmail.edu	M/E	M/E
Cathy O'Hara Weiss	Universities of Wisconsin, Dir. Facility Planning & Arch.	780 Regent St.	Suite 239	Madison	WI	53715	cathy.o.weiss@wiscmail.edu	E	E
Liz Davey	Universities of Wisconsin, Sustainability Coordinator	780 Regent St.	Suite 239	Madison	WI	53715	liz.davey@wiscmail.edu	E	E
University of Wisconsin - Madison									
Aaron Williams	UW-Madison, WEPA Coordinator	21 N. Park St.	Suite 6101	Madison	WI	53715	aaron.williams@wisc.edu	M/E	M/E
Janine Glaser	UW-Madison, Senior Campus Planner	21 N. Park St.	Suite 6101	Madison	WI	53715	janine.glaeser@wisc.edu	E	E
Scott Utter	UW-Madison, Director of CPLA	21 N. Park St.	Suite 6101	Madison	WI	53715	scott.utter@wisc.edu	E	E
Missy Nergard	UW-Madison, Director of Sustainability	21 N. Park St.	Suite 6100	Madison	WI	53715	missy.nergard@wisc.edu	E	E
Chris Strang	UW-Madison, Assistant Vice Chancellor EH&S	21 N. Park St.	Suite 7100	Madison	WI	53715	christopher.strang@wisc.edu	E	E
Mike Hanson	UW-Madison, Director Utilities & Energy Management	30 N. Mills St.	4th Floor	Madison	WI	53715	mchad.hanson@wisc.edu	E	E
Bo Muwahid	UW-Madison, Project Manager	21 N. Park St.	Suite 6101	Madison	WI	53715	bo.muwahid@wisc.edu	E	E
Susan Yackee	UW-Madison School of Public Policy	1225 Observatory Dr.		Madison	WI	53706	susan.yackee@wisc.edu	E	E
University of Wisconsin-Madison Student Representatives									
Landis Varughese	UW-Madison ASM Chair	333 East Campus Mall	E301 SAC	Madison	WI	53715	chair@asm.wisc.edu	E	E
Ashley Hagen	UW-Madison ASM Vice Chair	333 East Campus Mall	E301 SAC	Madison	WI	53715	vice-chair@asm.wisc.edu	E	E
Current Editor	Badger Herald Newspaper	152 W. Johnson St.	Suite 202	Madison	WI	53703	editor@badgerherald.com	E	E
Current Editor	Daily Cardinal	821 University Ave.	2142 Vilas Comm. Hall	Madison	WI	53706	editor@dailycardinal.com	E	E
Federal/Tribal Government Agencies									
Bill Quackenbush	Ho-Chunk Nation Tribal Historic Preservation Officer	P.O. Box 667		Black River Falls	WI	54615	bill.quackenbush@ho-chunk.com	E	E
Jon Greenreed	President, Ho-Chunk Nation	W9814 Airport Road		Black River Falls	WI	54615	vice-chair@ho-chunk.com	E	E
Shauna Marquardt	U.S. Fish and Wildlife, Field Office Supervisor	3815 American Blvd East		Bloomington	MN	56425	shauna.marquardt@fws.gov	E	E
State Elected Officials									
Governor Tony Evers	State of Wisconsin	115 East State Street		Madison	WI	53702	govinfo@wiscmail.gov	E	E
Rep. Shelia Stubbs	State of Wisconsin Assembly District 77	P.O. Box 8953		Madison	WI	53708	Rep.Stubbs@legis.wisconsin.gov	E	E
Senator Keidis Roys	State of Wisconsin State Senate District 26	P.O. Box 8982		Madison	WI	53707	Sen.Roys@legis.wisconsin.gov	E	E
State Government Agencies									
Tricia Canaday	State Historic Preservation Officer - WHS	#16 State Street		Madison	WI	53706	tricia.canaday@wiscmailhistory.org	E	E
Anna Krosler	WI-DNR Endangered Resources	P.O. Box 7471		Madison	WI	53708	anna.krosler@wiscmailhistory.org	E	E
Adam Mickowick	WI-DNR VLTPA Coordinator	P.O. Box 7471	C412 DNR Central	Madison	WI	53705	adam.mickowick@wiscmailhistory.org	E	E
Dane County									
Laura Holden	Director, Land and Water Resources	1201 Ferry Oak Dr.		Madison	WI	53718	landwater.dane@wiscmailhistory.org	E	E
Melissa Aparal	County Executive	210 Martin Luther King Jr. Blvd	Room 421	Madison	WI	53703	county.exec@wiscmail.danecounty.gov	E	E
City of Madison									
Meagan Tuttell	City of Madison, Planning Division Director	215 Martin Luther King Jr Blvd	LL 100	Madison	WI	53703	mtuttell@cityofmadison.com	E	E
James Wolfe	City of Madison, Director of Traffic Engineering	215 Martin Luther King Jr Blvd	Room 115	Madison	WI	53703	jwolfe@cityofmadison.com	E	E
Tara Hines	City of Madison, Director of Traffic Engineering	215 Martin Luther King Jr Blvd	Suite 109	Madison	WI	53703	tarahines@cityofmadison.com	E	E
Chris Petrykowksi	City of Madison, Assistant City Engineer - Public Works	215 Martin Luther King Jr. Blvd	Room 115	Madison	WI	53703	cpetrykowksi@cityofmadison.com	E	E
Greg Hines	City of Madison, Assistant City Engineer - Storm	215 Martin Luther King Jr. Blvd	Room 115	Madison	WI	53703	ghines@cityofmadison.com	E	E
Pete Holmgren	City of Madison, Water Utility, Chief Engineer	119 L. Olin Avenue		Madison	WI	53713	pholmgren@madisonwater.org	E	E
Ben Zellers	City of Madison, Joint Campus Area Committees	215 Martin Luther King Jr Blvd	LL110	Madison	WI	53703	bzellers@cityofmadison.com	E	E
Alder/Neighborhood/Business Associations									
MCAT Govindarajan	Alder District 8			Madison	WI		district8@cityofmadison.com	E	E
President	Capitol Neighborhoods, Inc.						president@capitolneighborhoods.org	E	E
Adjoining Municipality									
Baron Mooney	Village of Shorewood Hills, Village Administrator	610 Shorewood Blvd		Madison	WI	53705	bmoooney@shorewood-hills.org	E	E
John Himes	Village of Shorewood Hills, Village President	610 Shorewood Blvd		Madison	WI	53705	johnhimes@shorewood-hills.org	E	E
Designer/Architect/Engineer									
KieranTimberlake		841 North American Street		Philadelphia	PA	19123	press@kierantimberlake.com	E	E
Utilities									
Jeff Garland	AT&T Engineering						jg5181@att.com	E	E

Environmental Impact Assessment Document Distribution List
Music Hall Renovation Addition Project
University of Wisconsin-Madison
Project #A-24-012/D495-2501

Appendix F

Draft EIA Public Notice and Meeting Minutes
(reserved)